Reference Documentation

-/

Spring

§) SPring

s O Ur coe

3.1

Copyright © 2004-2012 Rod Johnson, Juergen Hoeller, Keith Donald, Colin Sampaleanu, Rob
Harrop, Alef Arendsen, Thomas Risberg, Darren Davison, Dmitriy Kopylenko, Mark Pollack,
Thierry Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer, John Lewis, Costin
Leau, Mark Fisher, Sam Brannen, Ramnivas Laddad, Arjen Poutsma, Chris Beams, Tareq

Abedrabbo, Andy Clement, Dave Syer, Oliver Gierke, Rossen Stoyanchev

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.



Spring Framework

Table of Contents

I. Overview of SPring FramEWOIK ..........ooi it e e e s e e e e e e e e neeeeeeas 1
1. Introduction to SPring FramEWOIK ..........ccoiiciiiiiiieeee e e e e e 2
1.1. Dependency Injection and Inversion of Control ............cccooecviveeiiiieeenniieee e 2

L2, MOQUIES ...ttt ettt e e et e e et e e e s e nba e e e e annree s 3
(O0 (=X @071 =1 0= SRR 3

Data ACCESTINTEGIAtiON ......uuvuiueuiuiuiiiuiuiuruenrnrnrnrrrrrrrrrrrrrrrrrrrrr.. 4

ATAT L o TSP PP PPPPPPPPPPPPPR 4

AOP and INSErUMENTALION ... e et ee e e e e e e e eeeeeee e e e e e e e e ennes 5

LI S P PPPRPRPPPPRN 5

1.3, USBOE SCENAIOS ....vveieeiirieeeiiiteee e ettt e e ettt e ettt e e e sttt e e e e e e e st e e e s anbne e e e anneeee s 5
Dependency Management and Naming CONVENtioNS ............eceeeeeiiiiiiiiieeeeeeeseennns 9

Spring Dependencies and Depending 0N SPring .........cceeeeevvveeeeiiiieeeennenn. 11

Maven Dependency ManagemMent .............ueeuveureeeermnrmmmmrmrrrmnmnn. 12

vy Dependency Management ..........coceeeeiiiiiiiiiieeeeeeescsiiree e e e e e e 13

oo o ] oo EN PRSP PR PPPRPP PP 14

Not Using COmMMONS LOGGING ....uvvvrrereeeeeiiiiiiiiiieeeeeeesssiierneeeeeeeesesnsnsneens 14

USING SLFAT oot 15

USING LOGAT ..ottt ettt e e e e e e et e e e e e e e e ennnraees 16

1. WhHat'S NEW IN SPIING 3 ..ottt e st e e e e e e e ennees 18
2. New Features and Enhancementsin Spring 3.0 ..., 19
2.1 JAVAD et e e pa e aae 19

2.2. IMproved dOCUMENEEEION .......ciiuviiieeiiieeee et e e e e e e e e e e e e e e e e e e 19

2.3. New articles @and tULOMTAIS .......ooouveiie it 19

2.4. New module organization and build SyStem ..........ccccoviiiieiiiiieeeeec e 20

2.5. OVerview Of NEW FEALUIES ........c.vviieiiiiie e e e e 21
Core APISUPdated fOr JAVAD .....cooiiiiiiiiiiiiee e 22

Spring EXPression LanQUAOE ......ccceevvviviiiiieecc ettt 22

The Inversion of Control (I0C) CONLAINES ..........cccoecviviriieeeeeecciieeee e 23
Javabased bean metadala ..........eevvvieeiiii e 23

Defining bean metadata within COMpoNENts .........cccooovviiiiiiiieeee e, 24

General purpose type conversion system and field formatting system ................. 24

L[] D= = T 1= S URRRRR 24

TREWED TIEr . a e 25
Comprehensive REST SUPPOIT .....coioiiiiiiiieeee e 25

@)\ A O o (o [ (o] =TT 25

Declarative model validation .............coeeiiiiiiiiiiiiiee e 25

Early support for JAVAEE 6 ..........ooeviiieiiiiiiieicc e 25

Support for embedded datalases ............coccvviiiiiiiiiie 25

3. New Features and Enhancementsin Spring 3.1 ... 26
3.1. Overview of NEW FEALUINES .........ceeiiiiiiee e 26

31 Reference Documentation



Spring Framework

CaChe ADSLIACHION ....coiiiiiiee it e e neeeeeaanes 26
Bean Definition ProfileS ........oocceiiiiiiee et 26
Environment ADSIraCtion ........cccuuviiiiieie e 26
PropertySource ADSIFaCHION ...........ueiieeeeiiiciiiieiee e e e e e e 26
Code equivalents for Spring's XML NamMeSPaCES ...........cvveerrirreeeiniieeeeiiieeeeenaes 27
SUPPOrt FOr HIDEIMNELE 4.X ....ovveieeeee e 27
TestContext framework support for @Configuration classes and bean definition

010 11 1= U EUR SR 27
C: namespace for more concise CONSIrUCLOr INJECTION ..........oocvveeeiiiieeeeiiiieeeeas 28
Support for injection against non-standard JavaBeans Setters ............ccccceeeeeeenen. 28
Support for Servlet 3 code-based configuration of Servlet Container .................. 28
Support for Servliet 3 MUltipartRESOIVEY ........ccoiiiiiiiii e 28
JPA EntityManagerFactory bootstrapping without persistence.xml .................... 28

New HandlerMethod-based Support Classes For Annotated Controller Processing
....................................................................................................................... 29
"consumes' and "produces’ conditions in @RequestMapping .........ccccoevvveeeens 30
Flash Attributes and RedireCtAttribUtes ............ccoveiiiiii e 30
URI Template Variable ENhanCEmMENtS ..........cccvivieiiee e 30
@Vaid On @RequestBody Controller Method Arguments ..........ccccceeeeeeeeennes 30
@RequestPart Annotation On Controller Method Arguments ..........ccccceeeeeenes 31
UriComponentsBuilder and UriCOMPONENES ........ccooivrrieeriiriee e e e 31
IR Oo =T 1=t o] 0] o = PPt 32
I 0 T= N Mo @ oo =] = USSR 33
4.1. Introduction to the Spring 10C container and beans ............cccceeveeeeeiiiciiiieneeenn, 33
4.2. CONLAINET OVEIVIEW ...eeiiiiiiiiieeeiteiee e sttt e e sttt e e s et e e e s ssbbe e e e asbe e e e s snabeeeessnbneeeeane 33
Configuration MELAAEEAL ..........vvveeeiiiii et 34
INStantialing @ CONAINEN .........cccuiiiiiiee et e e e e e e s s e e e e e e e e e eanes 36
Composing XML-based configuration metadata ..............ooccvveeeiiiieeeennnnn. 37
USING the CONLAINES .....ccoeieeee e 38
A.3. BEAN OVEIVIEW ..eieiieee ettt ee e e e e e ettt et e e e e e s e et e e e ae e e s s ansntb e s et aaeeessansnraeeeaaaenas 38
NaMING DEANS ... e e e e e e e annes 40
Aliasing a bean outside the bean definition ..........c..cccoooiciei e, 40
INSEANLIALING DEANS .......eiiiiiiiiie e 41
Instantiation With @ CONSLIUCION .........coiiuveiieiiiiiee e 42
Instantiation with a static factory method ..........ccocceeeiiiiiiiiiie e, 42
Instantiation using an instance factory method ............cccccvvviiiiiniiiiiiinn. 43
4.4, DEPENUENCIES ....eeeiiiiieiee ettt ettt sttt e e ettt e e et e e e e st e e e sbe e e e e anbe e e e s anbneeeeane 44
DEPEndenCy INJECTION ......coureieiiiiiiie ettt 44
Constructor-based dependency injeCtion ............ccccvveeeeeeeeiiiiiiiieeeee e 44
Setter-based dependency INJECHION ..........ccuevveiiiieiee e 47
Dependency reSolUtion PrOCESS .........ceeeeeeiiiiiiiiiieeeee e e e e e e e e eeearaees 48
Examples of dependency iNJECtION ...........oooviiiiiiiiiiiiie e 49
Dependencies and configuration in detail .............cccvvviiiiiiiniiiiiiii. 51
Straight values (primitives, Strings, and SO 0N) ........ceevvveeeiiiciiiiereeeeee e, 51
References to other beans (Collaborators) ...........cooccveveiiiiieeeinieee e, 53

31 Reference Documentation



Spring Framework

INNEF DEANS ...t e e et e e e naeee s 54
00 | 1= ox 1 o g RPRRRR 54
Null and empty StriNQ VAIUES .........uuvuiriuiiiiiiiiiiiiiirnirerrnrnrnrnnnm. 57
XML shortcut with the p-NameSPaCE .........ceeeeeiiiiiiiiieiiee e 57
XML shortcut with the C-NaMESPACE ........ccvvvveiiiiiiieeiieee e 58
Compound Property NAIMES ........cceeiiiciiiieeie e e e e ccirreee e e e e e s e ssnrrreeeeeeeeeannes 59
USING AEPENAS-OMN ..ottt e e e e 59
Lazy-initialiZEA DEANS ........cooiiiiiiieie e 60
AUtOWITING CONTADOTAIONS ......eeeiiiiiiie et 61
Limitations and disadvantages of aUtOWITiNG ............evvvverrieerirenimimenmnnnn. 62
Excluding abean from autowWiring ............ccoccviveerieeciiiiciiiieeeee e, 63
MELhOT INJECTION ... 63
Lookup Method iNJECHION .........cccvviiiiiiee e 64
Arbitrary method replacement ...........occeevieiiiiieeeie e 66
Y S I o0 o == P 67
The SINGIELON SCOPE ...cooiiiiiieeeei et 68
LILA(=T o010 1Y 1R olo] o 69
Singleton beans with prototype-bean dependencies ..........ccoovvccvvveveeeee e, 70
Request, session, and global SESSION SCOPES .......ccovvrrreeiiiiiieeeiiiiee e 70
Initial web configuration ...........cccuvieiiie e 70
REQUESE SCOPE ...ttt nr e 71
S S 0] IS vl o RSP 72
GlODal SESSION SCOPE ...t 72
Scoped beans as dependeNCIES .........ccuvviiirieee e 72
CUSIOM SCOPES ...iiiiiiiiiei ettt e e e e e e e e e e e e e e e e e aa e 74
Creating & CUSIOM SCOPE ...cceeuvriieeiiiieeeesiteee e et e e e et e e e st e e e s e e e e e 75
USING @ CUSEOM SCOPE ....vvveeereeeeeiiiitireeeeeeeesseintsreseeeesssesntsaneesasessssasnsneees 75
4.6. Customizing the nature of abean ... 77
LifecyCle CallDacKS ..........uuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiieiee e eeeeeeeeeeeererrrenrnrrrnnne 77
Initialization CallDACKS ........ccooviiiiiiieiiie e 77
Destruction CallDaCKS ..........oeiiiiieiiieieee e 78
Default initialization and destroy methods ..., 79
Combining lifecycle mechanisms ............cccccoiiiiiiiiic e 80
Startup and shutdown Callbacks .........cccveveeieeiiiiiiiee e, 80
Shutting down the Spring 10C container gracefully in non-web applications 82
ApplicationContextAware and BeanNamMEAWEIE ...........uvvvverrrermvermmmmmnmmmmmnmnmnnn 83
Other AWare interfates ........vuvivviiei e 84
4.7. Bean definition iNNEMTaNCE ........oooioeiiiiiiiiee e 86
4.8. Container EXtENSION POIMNES .......cvviiiiiiiiiieiiiiiie et e e 87
Customizing beans using a BeanPOStPrOCESSON ...........cuvveeiiiireeeiiiiiee e 87
Example: Hello World, BeanPostProcessor-style .........ccccvvveeeeeeeeecccvnnneen. 89
Example: The RequiredAnnotationBeanPosStProcessor .........cvvveeeevvecevvennen. 90
Customizing configuration metadata with a BeanFactoryPostProcessor .............. 90
Example: the PropertyPlaceholderConfigurer ..........ccooecvvveveeeeee v, 91
Example: the PropertyOverrideConfigurer ..........ooccveveviiieeenniieeeenieeeenn 93

Reference Documentation



Spring Framework

Customizing instantiation logic with a FactoryBean ..............ccocvveeeeeiiiiicinnnen, 94
4.9. Annotation-based container CONfigUration .............cceeeiriirieeiiiiiee e 95
(@0 =0 U 1= PPN 96
(@S 16 Y (= o IR 97
Fine-tuning annotation-based autowiring with qualifiers ...........cccccooceeiiinnnen. 99
CUStOMAULOWIFECONTIQUIEN ...eiiie ettt e e e 104
@RESOUICE ......ceeeeeette et e ettt e e e e e e e ettt e et e e e e e e e es b e e s e eeeeeeeetbaaseeeeeeeessaanns 105
@PostConstruct and @PIEDESLIOY .......ccceiiiiiuiiiiieiiee et 106
4.10. Classpath scanning and managed COMPONENTS .........ccoviuereerriirieenniieeeesnineeens 107
@Component and further stereotype annotations ..............eeeeeeeeeeieiniieninimn. 107
Automatically detecting classes and registering bean definitions ...................... 107
Using filters to CUStOMIZE SCANNING .......ocuvveeeiiiiiiee e et 109
Defining bean metadata within COMPONENES .........coeveiiiiiiiiiiieeeeee e, 110
Naming autodetected COMPONENTS ..........uvveeiiiiiie e e e 111
Providing a scope for autodetected COMPONENES ...........evvvviviriririreriiiirnrnrnrnnnnn. 112
Providing qualifier metadata with annotations ............cccocveveeiiiiieeeiniiece e, 112
4.11. Using JSR 330 Standard ANNOLELIONS ...........eeueeerererreemeererreenrerrrnrerrermnrrn. 113
Dependency Injection with @Inject and @Named ..........ccccceveveeeeeiiiiiineeneeenn, 114
@Named: a standard equivalent to the @Component annotation ...................... 114
Limitations of the standard approach .............ccccceeeeei i, 115
4.12. Java-based container CONfiQUIation ...........cccuveeeiiiereeeiiiieeeesiiree e e 116
Basic concepts: @Configuration and @Bean ..............evvveviviminiiiiininiiininieinnn. 116
Instantiating the Spring container using AnnotationConfigApplicationContext .116
SIMPIE CONSLIUCTION ... a e 117
Building the container programmatically using register(Class<?>...) ........ 117
Enabling component scanning with scan(String...) .......ccooceveeeiiieeeennne. 117

Support for web applications with AnnotationConfigWebA pplicationContext
............................................................................................................. 118
Composing Java-based configurations ...........cccccceevveeei 119
Using the @IMport @NOLaLiON ..........ccoiiueereiiiiiiee e 119
Combining Javaand XML configuration ..............ccccveeereeeeiiiiciiiieneeenn. 122
Using the @Bean annOLation .............eeeveeeiiiiiiiiieieee e r e e e e 124
Declaring @bEan ..........oooiiiiiiiiei 124
INjeCting dePENUENCIES .....ceeeeiiciiieeee e 125
Receiving lifecycle callDacks ... 125
Specifying bean SCOPE ........ccovvvvviiiie 126
Customizing bean NAMING .........ooiiiiiiiieiie e 128
BN @li@SING ....evveeeiiiiei i 128
Further information about how Java-based configuration worksinternaly ........ 128
4.13. Registering aLoadTimEWEAVES ........c..oeeiiiiiiieiiiiiee e 129
4.14. Additional Capabilities of the ApplicationContext ...........ccccceeeeeeeiiiciiiiienenenn. 130
Internationalization USINg MESSAgESOUICE .........cceiiurrrieeiiirieeeiiieeeessieeee s 130
Standard and CuStOM BEVENES ........oooiiiiiiiieeee e 133
Convenient access to |OW-1eVEl TESOUICES .........ccueeeeviiiieeiiiiie e 136
Convenient ApplicationContext instantiation for web applications ................... 137

Reference Documentation



Spring Framework

Deploying a Spring ApplicationContext as a J2EE RARfile ..., 138
4.15. ThE BEANFACIOIY ......eiiiiiiiiiee ettt 138
BeanFactory or AppliCatioNCONIEXL? .........uuvururrrururirrrinnrrinrrenrrrnrrnrerrn. 139
Glue code and the evil SINGIELON .........c.ovviveviie e, 140
B5.RESOUITES ... 142
ST I g1 0 [F o1 o o IR OUPRPRPPPRRRN 142
5.2. The RESOUICE INTEITACE ....eviiiie e 142
5.3. Built-in Resource implementations .............cocccvieieriee e iciiiee et 143
UFTRESOUICE ..eveviiieeeeieiiieiee e e e e e s et te it e e e e e s e sttt e e e e e e e s e et aaeeeaaeesssansstaaneaaaenas 143
ClassPathRESOUICE ... 144
FilESYSLEMRESOUICE ....uvviiiieeeeiiiiiiiiee e e e e s e e e e e e e s e et e e e e e e s s rraereaaee s 144
SErVIEICONEXIRESOUICE .....eveeieieeei e e e e e e e e e 144
INPUESIFEAIMRESOUITE ......cciiieieieiiiee ettt e et e e e e e e e et n e e e e e e enesnanns 144
BYEATITAYRESOUICE .......evvieririiiiiiiiiiiririeiiirnee e nrrrnenenenes 145
5.4. The RESOUICELOAOEN ........oiiiiieieiiieieiieee e e e e 145
5.5. The Resourcel oaderAWare interface ..........oocccvveieriee e 146
5.6. ResOUrces as dependenCieS ........ocvueieiieeeee e eeeiiieiie e e e e e e e e e e 147
5.7. Application contexts and Resource paths ..........cccevvveeeiiiiciiiiieeece e, 147
Constructing appliCation CONEXLS .........ccccuurieiiiiireeiieieeesiree e e 147
Constructing ClassPathXml A pplicationContext instances - shortcuts ....... 148
Wildcards in application context constructor resource paths .........ccccccveveenneee. 149
E N 1B Y (oY = 1= 1 1Nt 149
The classpath™: Prefix ... 150
Other notesrelating to wildcards .............oveeeiieeeiiiiiieeee e, 150
FileSyStEMRESOUICE CAVEALS ........vvvvieiieeeesiciiiieiee e e e e e s eetrre e e e e e e e e snrrraeeeea e 151
6. Validation, Data Binding, and TYPe CONVEISION ..........ccooiurrieiiiiiiieeiiiiiee e 153
L0 I g 0 [F o1 o o PRSP PPPRRRN 153
6.2. Validation using Spring's Validator interface ...........coovvieeeiiieieiiiiee e 153
6.3. Resolving codest0 ErrOr MESSAGES .....cccevvvviiieieieeeeeeeeeee et 155
6.4. Bean manipulation and the BeanWrapper .........occeeeeiiiiieeeiiiiiee e 155
Setting and getting basic and nested properties .........ccccceevveeeciiieeeeee e e, 156
Built-in PropertyEditor implementations ..........ccccceeeeeiicciiieiee e, 157
Registering additional custom PropertyEditors ...........cccoocvveeeiiiieecennnee. 160
6.5. SPring 3 TYPE CONVEISION .....ccoiiiiiiiiiieee e e e ettt e e e e s st e e e e e e s tnraee e e e e e 163
CONVEITEr SPL ... 163
LO00] 0117 4= = o (o Y/ 164
GENENTCCONVEITE ..oiieieiiiciiiiiei e e e e e sttt e e e e e e e s e e e e e e s e s e e e e e e e e e e nnnnreaees 165
Conditional GeNeriCCONVEITES .........coiiieiiiiieeeee e e 165
CoNVErSIONSEIVICE AP ..o 166
Configuring 8 CONVErSIONSEIVICE ......ceiiiiiiiieeiiiiee et e e e e e e 166
Using a ConversionService programatiCally ......ccccceeeeeeiiciiiiieeiee e, 167
6.6. Spring 3 Field FOrMatting ...........oooiiiiiiieiiiiie e 167
FOrMELLEr SPL ...t ebeeeeebsbeneee 168
Annotation-driven FOrMatting ..........ccceeeviiiiiiiieieiiee e 169
Format ANNOtation AP ......oooieee e 170

31 Reference Documentation Vi



Spring Framework

FOrmMatterREGISITY SPl ..eeeeiieeieeecee e 171
FormatterRegistrar SPI .........ooiiiiiiie e 171
Configuring Formatting in Spring MV C ..., 172
6.7. SPring 3Validation .........coeviieiiiiiiiieiie e 173
Overview of the JSR-303 Bean Validation APl .........cccoooeiiiiiieeeee, 173
Configuring a Bean Validation Implementation ...........c..cccoeeeiieieeeeeeecccinnnnen, 174
INJECting @V alidaOr .......coiuiiiieiiiei e 174
Configuring Custom CONSLraiNES ........cccvvveieeieeeeiiciiiee e 175
Additional Configuration OPLIONS ..........cccoiiuriieiiiiiie e 175
Configuring aDataBinder ..........ccoooviviviiiiii 175
Spring MV C 3Validation .........ccoeiiiiiiiiiiiiie e 176
Triggering @Controller Input Validation ............cccceveiiiiiieiiniiieeenieeen, 176
Configuring aValidator for use by Spring MVC ......cocceevveiiiiiiiiiiieeeee, 176
Configuring a JSR-303 Validator for use by Spring MVC ..........cccveeenee 177
7. Spring Expression Language (SPEL) ...oovvvvvveeeeeeeeeeeeeeee 178
725 TR 1 1 L1 o o o SRR 178
7.2, FEAUNE OVEIVIBIW ... e e ettt e e e e et e e e e e e e e et e e e e e e e e s ennnaneeeeaaeeas 178
7.3. Expression Evaluation using Spring's Expression Interface ............ccccvvvveeeeenn. 179
The EvaluationContext iNterfaCe ..........oocceviiiiiee e 182
TYPE CONVEISION ..uvveiiiieeeeiiciiiiiee e e e e e e et e e e e e e et e e e e e e e s s eanra e reaaeeas 182
7.4. Expression support for defining bean definitions ............ccccovvveeiiiiic e 183
XML based CONfIQUIaioN ...........eeeeeereueeeeeeereeeeeserennenrerennnenrennnnnnnernnrnnnnnnnnnnne 183
Annotation-based CONfIQUIaLION ...........c.ueviiiiiiiee e 183
7.5. Language REFEIEINCE ........eiiiiie ettt e e e e e e nreeeeeaae s 185
Literal EXPrESSIONS .....uuviiiiieeeeeiiiiiiieeee e e e s s et e e e e e e e s s et ae e e e e e e e e e e eanberaereaaeeas 185
Properties, Arrays, Lists, Maps, INAEXErS ..........uvvevieeeeiiiiiieiece e 185
INHNETISES e st e e e e 186
ATTEY CONSLIUCTION ...ttt e e e e 186
IMBLNOOS ... e e e e 187
(@ 0< 1= (o] ST PP O PPPTPRRPP 187
Relational OPEraorsS .......ccoieeeiiiiiiieiie e e e 187
(oo [[or= e 0= = (0] ¢TSRS 188
MathematiCal OPEIELOIS ..........oveiiuiiieeiiii e 188
ASSIONMENT .o e e s e e e e e e e s e et e e e e e e e e s e e nntrarreeeaaeeas 189
LI 0T PP P PSP PP P PP PP PPPPPPPPPPPPPPPPR 189
CONSITUCLOS ... 189
VATADIES .. 190
The #this and #root Variables ... 190
FUNCLIONS ..iiiiiieie ettt st e et e e e e e e 190
BEAN FEfEIENCES ... 191
Ternary Operator (If-Then-ElISE) .........cooiiiiiiiiiie e 191
THE EIVIS OPEIEION ....eiiiiiieie ettt 192
Safe Navigation OpErator .........cccovvviiiiiii e 192
COllECION SEIECLION ... 193
COllECtiON PrOJECLION .....veiieiiiiieee ittt 193

31 Reference Documentation Vii



Spring Framework

EXPression temMpPlating ......eeoeeoeiiiiiiiee e 194
7.6. Classes used inthe @XamMPIES ........oooiiiiieiiie e 194
8. Aspect Oriented Programming With Spring ..., 198
LS8 g1 70 [F o1 o o T PP P PP PPUPPPPPPPRPN 198
A OP CONCEPLS ...ttt e et e e e e e e e e s e re e e e e s 198
Spring AOP capabilities and goals .......c.c.ueeevieeiiiiiiiiiiee e 200
AOP PIOXIES .oiiieiiiiiiieiiiee ettt e e e s et r e e e e e e s e e e e e e e e e e e ntnnaaeeeaeeeas 201
8.2. @ASPECLI SUPPOIT ..o 202
Enabling @ASPECET SUPPOIT ..ottt 202
DS e Lo I I S o= o R 202
Declaring @POiNCUL ........coiiieiiiiciieiee e ea e 203
Supported PointCut DESIGNELONS .........vvveiiirieeeiiiieeesineee e e e 204
Combining poiNtCUt EXPrESSIONS ........ccvvvriiiieeeeeiiiiiiree e e e e e e eesirrarereae e 206
Sharing common pointcut definitions .............coocveiiiiiiee e 206
0] == PP 207
WIriting gOOd POINECULS .......vvveeeiiiiie ettt 210
D= o = 1] 1o I 1Y/ ol R 211
BEfOr@ adVICE .....evieiiieie e 211
ATLEr refurning @0VICE ........vviiiiiiiiie et 211
AFter throwing adVICE ......ccooiiiiiiiieee e 212
After (finally) @0VICE ...oooiiieiieeee e 213
ATOUNT BAVICE ...ttt 213
AQVICE PAIBMELENS .....eeiiiiiiiiee ettt e 214
ACVICE OFUEITNG .. e e e e e 218
INEFOTUCTIONS ...ttt e e e neees 218
ASpect iNstantiation MOTEIS .........vvveiiiiiiiie e 219
EXAMPIE .. 220
8.3. Schemarbased AOP SUPPOIT ........viiiiiieieeiiiiie ettt 221
D= e 1o I IS o= o R 222
DeClaring @POINTCUL ........coivrreieiiiiiee et e e e e e e e 222
DeClaring @dVICe ........eeeiiiiiiee et 224
BEfOr@ adVICE ....eevieiiieie e 224
ATLEr refurning @0VICE ........vviieiiiiiee e 225
AFter throwing adVICe .......coooiiiiiiiieiee e 225
After (finally) @0VICE ...ooiiiiiiiee e 226
ATOUNT BAVICE ... 226
AQVICE PAIBIMELENS .....eeiiiiiiiiie ettt et e e 227
AGVICE OTUENING ettt e e 229
INEFOTUCTIONS ...ttt e e e e e e neees 229
ASpect instantiation MOTEIS .........evviiiiiiiiie e 230
01V PP 230
EXAIMPIE .. 230
8.4. Choosing which AOP declaration Styleto USe ........ccccovvvvvviiiii 232
Spring AOP or fUll ASPECLI? .eeveeee e 232
@Aspect or XML for SPring AOP? ......oeieiiiieeeeiee e 233

31 Reference Documentation Viii



Spring Framework

8.5. MiXiNG GSPECE tYPES .. uuviiiiiieie ettt e e e e e e e e et e e e e e e et rraeeaaaeeas 234
8.6. ProxXying MEChANISIMIS .......uviiiiiiiiie ittt e e e e e aaes 234
Understanding AOP PIOXIES ....ccceeeieiiiiiieieee e s s s s s s s s s s 235
8.7. Programmatic creation of @ASPECtI PrOXi€S .......ccevveeeeiiiiiiiiiiiee e, 238
8.8. Using AspectJ with Spring appliCations ............ccceeeeiriimiieeiiiie e 238
Using AspectJ to dependency inject domain objects with Spring ............c......... 238
Unit testing @Configurable ODJECES ..........oeeviiiiiiiiiiiiiie e 241
Working with multiple application CONtexts ...........cccovevvieeeee e, 241
Other Spring aspectSfOr ASPECET .......ooviiiiiiieiiiiiie et 242
Configuring AspectJ aspectsusing Spring l10C ..., 242
L oad-time weaving with AspectJin the Spring Framework .............cccccvveeeee. 243
A TIrSt @XAMPIE ..o 244
AAGPECES ittt 247
"META-INF@OPXMI' e 247
Required libraries (JARS) .......uuiviuiiiiiiiiiiiiiiiiiiiiiiiienrrrennennneennnnn. 247
SPring CONFIGUIALTION .......vvieiiiiiiee et 248
Environment-specific configuration ............cccceeveeeeriiiiiiiiiee e, 250
8.9. FUINEr RESDUITES .....eiiiiiiiiieeiiiiiee ettt ettt et e et e e nnbn e e e e aaes 253
9. SPIHNG AOP APIS ...t 254
LS8 g1 7 [F o1 o o PRSP PPPRRRN 254
9.2. POINECUL AP N SPIING .ottt 254
LO0] 000 o K= 254
OpErations 0N POINTCULS .......couvvrreeiiiiieeeisiieeee e st ee e s e e e s e e e s sbreeeesseneeeeanes 255
ASPECtI eXPressioN POINECULS ........vveiriieeees i iee e e e e s e e e e e e e e eeeaeeeeeaeeeas 255
Convenience pointcut implementations .............ccccvveerieeeeiicciiiieeee e 255
SEALTIC POINTCULS ...ttt e e 256
DYNaMIC POINTCULS ......vvveiieeeeiiiiiiiieiee e e e e e s e e e e s s e e e e e e e s e e saenenees 257
POINTCUL SUPEICIBSSES ....eeeiiieiieeiiieie ettt 257
CUSLOM POINICULS ....cceeeeeeieeeee e 258
9.3, AQVICE AP 1N SPIING ittt ettt eeeeaaes 258
AAVICE IITECYCIES ... 258
AdVICELYPESIN SPIIMNG weveveieeeiiiiiiiiiee e e e e e r e e e e 258
Interception arouNd 80VICE .........ccuuvieiiiiiiie e 258
BEfOr@ aVICE ....oeviiiiiiiiie e 259
TRIOWS BAVICE ....eeiiiiiiieee et e e ee e 260
After REIUMING @0VICE ....uvvvviiiiiiiiiiiiiiiiiiiiirniinrenrnrnennnerrrnnennr. 261
Fpirgelo (Ve Lo g Ir="o V7 Lor - SRR 262
9.4. AQVISOr API TN SPING .t 265
9.5. Using the ProxyFactoryBean to create AOP ProXi€s ........ccccveeeeeeeeiiiiiivnnneneeeenn. 265
2= o PSSR 265
JAVaBEAN PIrOPEITIES ...coii e et e e e e e e e e aanes 266
JDK- and CGLIB-baSed ProXi€S .........eeieiiiiiieeiiiiiee e 267
ProXying iNtEIfaCES ........uuuiuiuiuiuiiiiiiiiiuiiiuiniiieenrrrrrrrrrrrrr . 268
ProXYiNg ClaSSES ....vviiiiiiiiee et e e e a e 270
USING 'GIoDaI" @OVISOIS .....coiiiiiiieiiiii et 270

31 Reference Documentation iX



Spring Framework

9.6. Concise Proxy definitioNS ..........ccciiiiiiee e 271
9.7. Creating AOP proxies programmatically with the ProxyFactory ..............cc........ 272
9.8. Manipulating advised ObJECES ......ccoovviiiiiii 272
9.9. Using the "autoproXy" faCility .......cccveeieeeeeiiiiieiee e 274
Autoproxy bean definitions ............coooiiiiiiiii 274
BeanNameAULOPIOXYCIEaLON .......covvveeiieeiiiiiieieeeeeeeeeiinns e e e e e eeerrenn e 274
DefaultAdviSOTAULOPIOXYCIEEION .......cc.vvveeiiiiieieeeiieee et 275
AbstractAdviSorAUtOPrOXYCIrEAtOr .........ooccivirieeiee e e e et e 276
Using metadata-driven auto-proXying ........ceeeocveeeeeniieeeesiineeeesnieeeessneeeeesnnes 276
9.10. USING TArgEISOUICES ....cceeeeeieiieeeee et 278
Hot swappable target SOUICES ........uuviiiieeee it a e 279
POOIING tArgEL SOUMCES ...ttt 280
Prototype targel SOUICES ......ccuvvuuiiiiieeiiieiiiiise e et e e e e e et e e e e eeeenanns 281
ThreadL OCal target SOUICES ..........ceiiiiiieie it e ettt 281
9.11. Defining New AQVICELYPES ....ccoeeeeeeeeeeee e 282
0.12. FUINEY FTESOUICES ......evvvieieeieeeeseeiiitteeeee e e s e setatae e e aae e e s e ssntaaeeeeaaeessannssrnanraaaenas 282
0 1= ] o SRR PUPRRR 283
10.1. Introduction t0 SPriNg TESHNG .....cevieeeeiiciieei e e e e 283
10.2. UNIE TESHNG ©vveeeiiiiieeeiiiieeeesiiee e e esiee e e e st e e e e ssaaee e e s nteaeessnneeeeeennaaaeeenssneeeeanns 283
MOCK ODJECLS ....cooiiiiiiieiee et e e et e e e e e st ae e e e e e e e e e et bt reeeeaaeeas 283
IN D e 283
SEIVIEE APl ot 283
o)1 = 2 o PO PPPPPPPPRPPPPPRt 284
Unit Testing SUPPOrt CIESSES ......ccceeviiiiieeee et e e e e e 284
GENEral ULTTITIES ...eeiiieiiieee e 284
SPHNG MV C et 284
10.3. INtEGration TESHNG ..vveeeeeeeiiiiiiiieiee e e e e e e e e s e et e e e e e e e s s sarrrae e e e e e e e e eaanes 284
OVEIVIBIW .ttt ettt e e e et e e e e e e e s st e e e e e e e s s annttaneeeaeeeeennnneeaees 284
Goasof Integration TESHING ...ccceeveveeiiiiieieeee 285
Context management and Caching ............ccccevviiiiiiiiiiee e 286
Dependency Injection of test fiXIUres .........cccveeeiiieeiiiii e, 286
Transaction MaNAgEMENT .........ovueiieeeeiicciiier e e e e e e e e e e 287
Support classes for integration teSHING .........ovevviiirieiiiiiie e 287
JDBC TESHNG SUPPOIT ..ottt e e ettt e e e e s s et e e e e e e s s s snnrrreeeeeeeeeennnes 288
N 00 = 1 o SRS 288
Spring Testing ANNOLALiONS .........cccevvviiiiiiiee e, 288
Standard ANNOatioN SUPPOIT ......coeiivreieiiiiiie et 292
Spring JUNit Testing ANNOLBLIONS .......cccoiurieeeiiiiee e e 292
Spring TestContext FrameWOIK ........ccc.vveieeeee e 294
Ky @DSITACHIONS ...t 294
Context MaNagEMENT .......vuiiie e e e e e e e e 295
Dependency injection of test fIXTUreS ..........ccccvveiiiiiieiiiiiee e 303
Transaction MaNBgEMENL ...........eeuereueereeeeeerererrenreenrnrnnrrerrerrrrrnrrrnrrrnn 306
TestContext SUPPOIt ClASSES .....vvviiieeee it ee e e e a e sarare e e e 308
PetClinIC EXAMPIE ... 310

31 Reference Documentation



Spring Framework

10.4. FUINE RESOUICES .....ceivveeeeiiiiieeeeiieee e s sttt e e s ssteea e e s nteeeesasaeeeeannneeeeeennseeeeeann 312
IV . DBLBLACCESS ...ceettieee e e e ettt e e e e et ettt e e e e e et et et b e e e e e e eeeeb bbb a e e e e e e e e e et bba e e e e e e e e eerrba e eas 313
11, Transaction ManagemENt ......ccoooeiiiei i 314
11.1. Introduction to Spring Framework transaction management .............cccccceeeenees 314
11.2. Advantages of the Spring Framework's transaction support model ................... 314
GlODal tranSACtIONS .....c.vviiieiiiieiee e 315
LOCAl traNSACHIONS ... ..eveieiiieee et e e e e e e e e e e e e et rreeeeaeeeas 315
Spring Framework's consistent programming model ............cccovveeeeeeiiiiinnneen, 315
11.3. Understanding the Spring Framework transaction abstraction ...............ccceeene. 316
11.4. Synchronizing resources With transactions ............cccceeeevvivv e, 320
High-level synchronization approach ...........cccveeeviee i, 320
Low-level synchronization approach .............ceeeeeirieeeiiieeee e 320
TransactioNAWareDataSOUrCEPIOXY ......cccuvvvvereeeeeiiiiiiiiereeeeeessssisrnrereeaeeseananes 321
11.5. Declarative transaction ManNagEMENT ...........cceirurreerriireeeniiireeesnrreeessseeeeesaaes 321
Understanding the Spring Framework's declarative transaction implementation 323
Example of declarative transaction implementation .............cccoceeeeiiiiiee e, 324
Rolling back a declarative tranSaction ............ccccccueeiriiiiinninrinen. 328
Configuring different transactional semantics for different beans ..................... 329
<EX:BAVICE> SEEUINGS .....vveeeeeiieie et e e e e e aaes 331
USING @TranSactional ........c..ccoeiiiiiiiiiiiee e e e e snrrae e e e 332
@TransaCtional SELLINGS .......vvvveiiiiiiee e 336
Multiple Transaction Managers with @Transactional .............cccccvvvevnnnn. 337
Custom shortCut aNNOLALIONS ........eeeeiieiiiieiee e e e e s e e e e 338
Transaction Propagaliion .............eeereeeeeiieiiieee e e e e eteeee e e e e e e s s seeeeeeeeeaeeeeannes 338
S 11T = PSR 339
REQUITESINEBIW ...t 339
=S = o PR PR 340
Advising transactional OPEraONS ...........ceeeiriereeiiiiiiiee et 340
Using @Transactional With ASPectd .......coooeeiiiiiiii e, 343
11.6. Programmatic transaction Management ...........ccueveevrireeeerineeeesnireeessnieneeeennes 344
Using the TransactionTemMPIate ..........cooveeoiiiiiiiiieeee e 344
Specifying transaction SEtiNGS ........ooovcvvviiiiiiee e 345
Using the PlatformTransactioNManager ..........ccuveveeiiieieeniiireeeesiieee e 346
11.7. Choosing between programmatic and declarative transaction management ....... 347
11.8. Application server-speCifiC iNtegration ............ccceeeeriieeeeiiiieee e 347
IBM WEDSPNEIE ...t 348
BEA WEDLOGIC SEIVES ...ttt 348
OFACIE OCAT ...ttt e e e e e e s e e e e e e e e e e e nnneeeeas 348
11.9. Solutions to common ProblEMS ..........cooiciiiiiiee e 348
Use of the wrong transaction manager for a specific DataSource ...................... 348
11.10. FUtNEr RESOUICES .......vviieeiiiiieeeeiieee e e et e e et e e e et e e s ssaee e e s nnneeeeeenneeeeeeanns 348
12. DAO SUPPOIT o eeeeeiiitttee et e e e ettt e e e e e ettt e e e e s s e bbb e e et e e e e e s s annbbrr et e e e e e s e e nrnrneeas 350
2280 R 1 £ [ o 1 o) o USSR 350
12.2. Consistent exception hierarchy ............ooccoiiiiiei e 350
12.3. Annotations used for configuring DAO or Repository classes ............cccveeenee 351
31 Reference Documentation Xi



Spring Framework

13. DataaCCeSS With IDBC ......coiiiiiiiie ettt e et ettt e e e st e e e e st e e e snnneeeeeanes 353
13.1. Introduction to Spring Framework JDBC .........cc.coeoiiiiiieiiiiee e 353
Choosing an approach for JIDBC database access ..........cccccvvvvvvvvviiiiiiiiiccccee, 353
Package hi€rarChy .........ceeeiiiei i 354

13.2. Using the JDBC core classes to control basic JDBC processing and error handling
............................................................................................................................. 355
JADCTEMPIBEE ..ot 355
Examples of JdbcTemplate class USage .......cccveeeeeeeeiiiiiiiiineeeee e, 356
JdbcTemplate DESt PraCtiCeS .........oooiiiiiieeiiiiiee et 358
NamedParameterJABCTEMPIELE .........uvuvuivirieiiiiiiiiiiriiirieerrerrerererrererrr. 359
SIMPleJdbCTEMPIALE ... 361
SQLEXCEPLIONTIANS G0N ...ciieieieeeeiie ettt 363
EXECULING SLALEMENES ...vveiiiiieei it ee et s e e e e e e e et e e e e e e 364
RUNNING QUENTES ...ttt e 365
Updating the database ... 366
Retrieving auto-generated KEYS ........oooiiiieeiiiiiee e 366
13.3. Controlling database CONNECLIONS .......cccoeeeeeiiii i 367
DELASOUICE ...ciiiiiiiiiiiit ittt e e e e et e e e e e e e e eeeeaeeeas 367
DataSoUrCEULIIS ......eeeiiiiiiiiee e e e e et rrree e e e e 368
SMADEAIASOUICE ......ccoeiiieieeee e 368
ADSITACIDEIASOUITE .....eveiiieeeiiiiiiieiee e e e e s st e e e e e e e s e sreee e e e e e e e s s ssntnaaaeeeaeeeas 369
SingleConNECtioNDEASOUICE .........cccevviviiieieeeceeeeeeeeee e 369
DriverManagerDataSOUICe .........c.uueieiiiieiee it 369
TransactioNAWareDataSOUrCEPIOXY ......ccvvreeeeeeeeeiiaeiiieeeeeeeeesaeeneeeeeeeeeeseannes 369
DataSourceTransaCtioNManNaQEY ..........ceeeiieeiirieiieeee e s eiciiree e e e e e e e ssirrrae e ee e 370
NatiVEIADCEXLIACION ... eeiiiieeiiiiciiiiei e e e e e e erreeeeae e 370
13.4. IDBC hatCh OPErationS ........ccuvvvieiieeeiiiiiiiiee e e e et e e e e e e e e e e eanes 371
Basic batch operations with the JADCTEMPIAE .........eevveiiiiiiiiiieee e 371
Batch operationswith aList Of ODJECLS .........cvvviviiiiiiiiiiiiiiiieees 372
Batch operations with multiple Datches ... 373
13.5. Simplifying JDBC operations with the Simpleddbc classes ..........ccccccveeeinees 374
Inserting data using SImpleddbCINSert .........cccvvveeviee i, 374
Retrieving auto-generated keys using SimpleJdbclinsert ........ccccoeeeeeciiiienenenn. 375
Specifying columns for a Simpleddbclnsert .........cccceeeeeeeiiiiciiieeee e, 375
Using SglParameterSource to provide parameter Values .........cccoeevvvvcevvvienenennn. 376
Calling a stored procedure with SimpleddbcCall .............cccoo 377
Explicitly declaring parameters to use for a SimpleJddbcCall ...........cccvveeennnnnn. 379
How to define SQIParameters ..........oooo i 380
Cdlling astored function using SimpleddbcCall .........c.cccooviiiiiiieeee e, 380
Returning ResultSet/REF Cursor from a SimpleJdbcCall ..........ccccoeeviiiieeinnnen. 381
13.6. Modeling JDBC operations as JAVA OLJECES ........ccovveiuvviiieiieeeeiiiiiiiee e e e e 382
SOIQUETY .ttt e e e e e e e e aae 383
MaPPINGSOIQUENY ...uvuieieieiuiuiuiurutuenrnrnrrrrenenrrererrrrrrrrrrrrrrerrrrrrrrrrrrrrrrrrrrrrnrne 383
0| 10T = = PP 384
StOrEAPTOCEAUIE ....ceiieeeieeieeee ettt e et e e e e e s e et e e e e e e e e nnneeeeas 385

31

Reference Documentation

Xii



Spring Framework

13.7. Common problems with parameter and datavalue handling ............cccccoeeenne. 388
Providing SQL type information for parameters ...........ccoccuveeevriveeeeiniieee s e 388
Handling BLOB and CLOB ODJECES ...........uuuuiuiiiiiiiiiiriinirinirinenenemm. 388
Passing in lists of valuesfor IN clause .........ccccovevieeiiiiccec e, 390
Handling complex types for stored procedure Cals ..........cccccvvivieeeiiciinennnnnnn. 390

13.8. Embedded datahase SUPPOIt .........ooivieiiiiiiiiiei e e 392
Why use an embedded database? ...........cccooiiiiiiiiiiii e 392
Creating an embedded database instance using Spring XML ......ccccooeeviiiinnneen. 392
Creating an embedded database instance programmatically ...........cccccovcvveennee 392
Extending the embedded database SUPPOIt ...........uvuriirrmiiimimimineiinreinenrnnrnnnn. 392
USING HSQL oeeieiieei et e e e e e st e e e e e e e s e s raeeeaaee s 393
USING HZ oottt e e et e e e e st e e e e nnnae e e e ennreeeeeann 393
USING DEIDY v e e s e e 393
Testing data access logic with an embedded database .............ccccevviiieeeiiineen, 393

13.9. InitializiNg @aDataSOoUICE .......cccoeeiee e 394
Initializing a database instance using SPring XML .......coocoviiiiiiiiiieniiiece e, 394

Initialization of Other Components that Depend on the Database ............. 395
14. Object Relational Mapping (ORM) Data ACCESS .........cccuvviviiieeeeeiisiiiieeee e e e e e 397

14.1. Introduction to ORM With SPIriNg .....ccceviiiriiiiiiiiie e 397

14.2. General ORM integration CONSIAEratioNS .........ceeeeiiiiiiiieeereeeeeeiiiireee e e e e e e eenes 398
Resource and transaction Management ..........c.eeeveiiiieeeeinieeee e 398
EXCEPLiON tranSIation ............euvuueiuiuiiiuieriiuinrneeenrnenrnrereenerrnrrr—.. 399

G T o 1] o= = = SRR 400
SessionFactory setup in aSpring CoNtaiNEr .........cc.uveeevieeeeiiiceeee e 400
Implementing DAOs based on plain Hibernate 3API .......ccovvvveeeiiiiiiiiiieeeeen, 401
Declarative transaction demarCation ............ccccueveerieeeiiieciiieiee e 402
Programmatic transaction demarCation .............ccceeeeeeeiiiiiiiieeee e 404
Transaction Management SIrAEJIES .......ccoovurrieeiiieiee e 405
Comparing container-managed and locally defined resources .......................... 407
Spurious application server warnings with Hibernate .............cccoocoiiiiiiennne 408

I 5 1 RS OUSRRSPPRRR 409
PersistenceManagerFactory SELUD .....ceeveeeiieciiiieiee et ee e e e 409
Implementing DAOs based on the plain IDO APl ........cooiiiiiiiiiieeeeeee 410
Transaction MAaNAgEMENT .........uuviiiiiee e e e e e s e et e e e e e e e s e srrrrre e e e e e e s esnnes 412
o (o] D T = U RRERR 413

LS. TP A e b e e e e et e e e anrae e e e nraeeeaaane 414
Three options for JPA setup in a Spring environment ............ccceeevvieveeeeniveeenn. 414

Local EntityManagerFactoryBean .............coooiiieieiiiiiie e 414

Obtaining an EntityManagerFactory from JNDI .........cccccoeevviiiiiiiienenenn. 415

L ocal ContainerEntityM anagerFactoryBean .............cccccovvivveeeiiiieeeeniee. 415

Dealing with multiple persistence Units ........cccccceeeeeeiiiiiiiieeee e, 418

Implementing DAOs based on plain JPA .........ooiiiiiiiiieiieeee e 418

Transaction ManaQEMENT .........eeeeeeeeereeeeeeeeerererererenreerereerrrrrerrrrrrrrrrrrrrrrrrnrnrne 421

JPADHAIECT ...t 422

14.6. IBATIS SQL MAPS ..oeiiiiiiieeiiiiiiteeeiieee e e siieeeeasstaeaeessnteeeesanaeeaeasnneeeeeennsneeeaanns 422

31 Reference Documentation Xiii



Spring Framework

Setting up the SQIMapClHIENt ..o 422
Using SglMapClientTemplate and SglMapClientDaoSupport ..........cccccceeeeeennee 424
Implementing DAOs based on plain IBATIS API ........iiiiiiiiiiiiiiiiniiiiniennnn, 425

15. Marshaling XML using O/X MapPENS .....ccccuvvrierieeeeiiiiiiieeee e e e e e s ssinsneeeeee e e s e ennennnnes 426
G0 I 1 4o [ o 1 ) o OO SRR 426
15.2. Marshaller and Unmarshall@r .........c.coooiiiiiiiiiiiiiieeeieiee e 426
MAISNAITEY ....eeiiieeei e e e e e e e e e e 426
UNMAISNAITEN ..t e e e e e e e e e nnreeeeeanes 427
XMIMBPPINGEXCEPLION ....eiiiiiiiieeiiieiee et e e anes 428

15.3. Using Marshaller and Unmarshaller ..., 428
15.4. XML Schemarbased Configuration .............c.eeeeeeeeiiiiiiiieees e ee e e 430
15,5, JAXB oottt e e e e e et e e e e nraeeeannraeeeaanns 431
JAXD2MAISNEAIIEr ... 431
XML Schema-based Configuration ..............ccoorieeeeiiiineeessiieeeeesiieee e 431

S O L o SR OUPRPPPRRR 432
CastOrMarSNall€F .....ooceeicieee e 432

LY/ F=" o o 1 o PSSR 432

15.7. XIMLBEANS ...oeiiiiiiiee ettt ettt e e e e e e e e aae 433
XMIBeaNSMarshaller .......cooieiiiiieieee e e e e 433
XML Schemarbased Configuration ...........cccceeeeiiiiiiiiieeeee e, 433

15,8, JIBX e ——————————— 434
JIDOXMArSNAIIEN ... 434
XML Schema-based Configuration ..............coovrieeeeiiiiieee e 434

15,9, XSIIEAIM ..uiiiieeeiiiiie ettt e e et e e e et e e e et e e e et e e e e e st e e e e snsneeeeeanseneeeennsnneeeanns 435
XSIrEAMMArSNAIEN ..o 435

RV 1 0T o PPNt 437
16. WED MV C FraMEBWOTK .....veeeeiiiiiiie ettt e e e s e nneaeeeeane 438
16.1. Introduction to Spring Web MV C framework ...........ccoceviiiiiiiiiiii e 438
Features of Spring Web MV C ........uiiiiiiiiiiiiiiiiiiiiieineneeceeeeseeeeeeeeeennneennnnne 439
Pluggability of other MV C implementations ...........cceveviieieeiiiiiee e 440

16.2. The DIiSpaCherSEIVIEL ......cooeieieiee et e e e 440
Special Bean Types In the WebApplicationContext ............cccccvvvveeeeeeiiicinnnen, 443
Default DispatcherServiet Configuration .............ooccveveeiiieeeeiniieee e 444
DispatcherServiet Processing SEQUENCE .........cvvieieiieeee it 444

16.3. Implementing CONLrOIIErS .........oooiiiiiiiiee e 446
Defining a controller with @CONtroller ..., 447
Mapping Requests With @RequestMapping ..........cccvveeeiiirieeiniiiee e 447

New Support Classes for @ReguestMapping methods in Spring MVC 3.1 449

URI Template Patterns .........ccoeeiiiiciiiieice et e et e e e e 450

URI Template Patterns with Regular EXpressions ............ccccceevvieveennnee. 451

Path PatternS .......cooiiiiiiee e 452
Consumable Media TYPES .......vveieiiiiiiee e 452
Producible Media TYPES ....uuvuiriiiiiiiiiiiiiriiiireineninrnrnerrrenrnenerrrenerrnrr. 452

Request Parameters and Header ValUES ..........ovvevvveeiiiiciiiiieeee e, 453

Defining @ReguestMapping handler methods ... 453

31 Reference Documentation

Xiv



Spring Framework

Supported method argumeNt tyPES .........uvveeeeieeiiiiciiiee e 454
Supported Method return tYPES ......oeveeeeiiiiiiee e 456
Binding request parameters to method parameters with @RequestParam .. 457
Mapping the request body with the @RequestBody annotation ................ 457
Mapping the response body with the @ResponseBody annotation ........... 458
USING HEPENLITY<?> .o e 459
Using @ModelAttribute on amethod ...........occvvveiiiiiiiiiiieceeee e 459
Using @Moaodel Attribute on amethod argument .............oooccvvieeeeeeeniinns 460
Using @SessionAttributes to store model attributesin the HTTP session
DEWEEN FEQUESES ... 462
Specifying redirect and flash attributes ..........cccccoeecviieieee e, 463
Working with "application/x-www-form-urlencoded” data ...................... 463
Mapping cookie values with the @CookieVaue annotation .................... 464
Mapping request header attributes with the @RequestHeader annotation .. 465
Method Parameters And Type CONVErSION .........cuvveeereernermnmmmmmnmnmmmnnnmnn. 465
Customizing WebDataBinder initialization ...............occoeveiiiiiieiiniiieennne 465
Support for the 'Last-Modified' Response Header To Facilitate Content
CaChiNG oo ——————— 467
16.4. HAaNAIEr MEPPINGS ..ceiiteeeeeiiiiiee et e e ar e e e e e s e e e e e enrneee s e 467
Intercepting requests with aHandlerInterceptor ...........cccccveveeeeeiiiicciiieeeeeeenn, 468
16.5. RESOIVING VIBIWS ..ottt ettt e e 470
Resolving views with the ViewResolver interface ..........cccocvvvvvvviiniiiiniiiiiinnnn. 470
Chaining VIEWRESOIVENS .........uviiiiiiiiie ittt 472
ReAITECtiNg O VIBIWS .....eiiiiiieeeiee e a e 473
REJITECEVIBW .. 473
The redireCt: PrefiX .....ooo e 474
Theforward: PrefiX .o 474
ContentNegotiatingVieWRESOIVEN .........cocciiiiiiiiiee e 474
16.6. UsiNg flash altribULES .....ccooeeei e 477
16.7. BUIIAING URIS ...ttt 478
16.8. USINGIOCAIES ...ttt et e e e e e e e e e e e e e annes 479
AcceptHeaderLoCalERESOIVES .........ceeiiee i 479
CoOKieLOCAIERESOIVES .......uviiiiiieeei e 479
SESSIONLOCAIERESOIVES ....eiiiiiiiiiieiiiiiee ettt e e e e e e eeeeanes 480
Local eChangel NEErCEPLOT .......ccoiiuuriieiiiiiiee ettt 480
16.9. USINGTNEIMES ... 481
Overview Of tNEMES ... 481
DEfiNING TREMES ... 481
THEME FESOIVEN'S ... et 482
16.10. Spring's multipart (file upload) SUPPOI .........ccuvvieeiiiriee e 482
[F gL [N o1 o o PP 482
Using a MultipartResolver with Commons FileUpload ..........cccccoeviviviiiennnennn. 482
Using a MultipartResolver with Servliet 3.0 ......ooooeeiiieiiii, 483
Handling afileupload in aform .........cccccoooiiiiiiei e, 483
Handling afile upload request from programmatic clients ............cccccoveeeeeenn. 484
31 Reference Documentation XV



Spring Framework

16.11. Handling EXCEPLIONS ........cocuiiiiieeie ettt et e e e e e sarrrre e e e e e e e eanes 485
HandlerEXCeptioNRESDIVEY ........cuviiiiiiiiiiee e 485

(@) o= o 1u Ko F=T0 o | = R 486
16.12. Convention over configuration SUPPOIT ........ceveeeiiiiiiiieieree e esisireer e e e e e 487
The Controller ControllerClassNameHandlerMapping ..........ccccceevvciveeeeninneeen. 487

The Model ModelMap (Model ANAVIEW) .....oeveeeeiiiiiieiee e 488

The View - RequestTOViewNameTranslalor ...........ccoocveeeeiiieeeeniiieee e 490
IO B o r="o IS o oo PPN 491
16.14. Configuring SPring MV C .......oiiiiiiieeeiieee et 492
Enabling MV C Java Config or the MV C XML Namespace .........ccccevvvvvvvevennnns 492
Customizing the Provided Configuration .............cccccevveeee i, 493
Configuring INEEICEPLOIS .........veeeeiiiiiee et 494
Configuring View Controllers .........ccccviiiieiee e 495
Configuring Serving Of RESOUICES ........cccuieieiiiiiieeiiiiiee e 495
mvc:default-serviet-handler ... 497
More Spring WeD MV C RESDUICES ........cvveeiiiiieeeiiiieeeseiieee e siiee e e 498
Advanced Customizations with MV C Java Config ..........eevvvvvviinineninininininnnnn. 499
Advanced Customizations with the MV C Namespace .......ccccceveeeevviivvineeneeennn, 499

17. VIeW tECHNOIOGIES ....ceeiiiiiee ettt s e e e e e e n e e e e anes 501
0 g 0o (8 o1 o IR OUPRPPPPRRRN 501
17.2. ISP & JSTL et aaaaeas 501
VIBW FESDIVENS ..ot e e e e e e e e et eeeeaeeeas 501
'Plain-old' JISPSVErSUS JSTL ..ovvvieeeiiiiiiiier ettt e e e e 502
Additional tags facilitating development ...........cccooeiiiiiiiieie e, 502
Using Spring'sformtag library ........c.eeevveeiiiiiiiiicc e 502
CONFIQUIBLION .t e e reeaane 502
TheforMIag ..o 503

TREINPUL LAY .eeeeeeiiiii et 504

B I (ST e 11 010 ) = o Rt 504

The checkDOXES a0 ......ooovvviiiiiiiii e 506

The radiobUtoN tag .......ooeviiee e 506

The radiobUttoNStag ......ccooiiiieee e 507

The PASSWOIT a0 ......veeeeiiieiee et 507

TRESEIECL A0 ... 507

THE OPLION T8O ..eeieiiieiie et 508

B (ST e 0110 1S = o [Nt 508
TheteXtarEaTag .. ..c.vveee e 509

The NN TaQ .. .oooeeeeee e 509
TREEITOISTAY .ot et a e 510

HTTP Method CONVErSION ......c.cevviiiiiieeeeieiiiiiee e e e e 512

HTIMLS TAOS eevieeeiiiiie e eeiiee ettt s s e e et e e e e e e ennees 512

I T 1 1=~ 513
D= 0= 0 U= o 513

HOW tO INtEGIatE TIIES ..vveeeeiee e a e 513
UrIBasedVieWRESOIVEY ........ooiiiiiiiiiiiii e a e e 514

Reference Documentation XVi



Spring Framework

ResourceBundleViewRESDIVEr ..........coccueiiiiiiiiiie e 514

SimpleSpringPreparerFactory and SpringBeanPreparerFactory ................ 514

17.4. VelOCity & FreeMarker .....ccooooiieee e 515

DEPENAENCIES ...t e e s e e e e e et aa e 515

Context CONFIGUIALTON ......eeeiiiiiieeiiiie et e e e e e e e e 515

Creating tEMPIAES ... 516

Advanced CONFIGUIALTION ........cceiiiirieeiiieee et 516

VEIOCITY.PrOPEIIES ....vviiieiiee e e 517

FrEEMarKer ...ooooeeiiiee e 517

Bind support and form handling ...............eeeeiiiiiniiiiii——. 517

The DINA MBCTOS ......eviiiiiiiiee e 518

SIMPIEDINGING .. 518

Form input generation MECIOS ........eeeveeeeeiiiiiiiiieeeeeeesseetirre e e e e e e e e seenaeeeas 519

HTML escaping and XHTML complianCe ........cccoocvvveeiiiiineeeiiiieee e 523

ST R SR OUPRPSPPRRR 524

MY FFSEWOIAS ..ooiiiiiiiee et 524

Bean definitions ..........eeiiiiiiiii e 524

Standard MV C controller COAE ..........uevviiiiiiiiiiiiiee e 524

Convert the model datato XML ....cooooieiiiiiiiiee e 525

Defining the VIew Properties ...........eeeveeeeiiiciiiiieceee et 526

Document transformation ..............uveereeeeeiisciieiereee e e seiieee e e e e 526

RS 01117 Y 526

17.6. Document Views (PDF/EXCE) .....ooouveiiiiiiiie it 527

1110 o U Tox £ o o ISR 527

Configuration and SELUD .......vveieeeeeiiiiiiieiee e e e e s e e e e 527

Document view definitionS ............eeeeiieeiiiiiieee e 527

CONLIOHEr COUR .....vvieeeeiieee ettt e e ane 528

SUDCIasSING FOr EXCEl VIBWS ......coiiiiiiiieiiiiie et 528

Subclassing for PDF VIEWS .......cooovviiiiii 529

17.7. JASPEIREPOITS ... 530

(D= o1 10 L= o =PSSO 530

(O0 101 110 U1 (0] I PP 530

Configuring the VIeWRESOIVESN .........ooviiiiiiiieciieec e 531

Configuring the VIBWS .......cuviiieiiie e 531

ADOUL REPOI FIlES ... 531

Using JasperReportsMUultiFOrmatView ........ccoeeeveeeiiiiiiie e, 532

Populating the MOJElANAVIEW .........cooiiiiiiiiiiee e 533

Working With SUD-REPOIS ..........cvviiiiiiiieeeie e 533

Configuring SUb-RePOIt FIlES ........coooiciiiieieeee e 534

Configuring Sub-Report Data SOUICES ..........ccovvereeiiiireeeiiiieeeeesieeee e 534

Configuring EXporter Parameters ...........ueeeeieeeiiiiiiiiieeee et 535

17.8. FEEA VIBWS ..o 535

17.9. XML MarshalliNg VIBW .....cccuueiieeiiiie et e e e e nneeeeeanee 536

17.20. JISON MaPPIiNG VIBW ...cccoiiiiiieieeie e e ettt e e e e e e e e e e e e s s santaaneeeeeesaannes 536

18. Integrating with other web frameworks ... 538
31 Reference Documentation XVii



Spring Framework

18. 1. INEFOTUCKION ..eiiiiiiiiee ettt et e e e et e e e st e e e e nnne e e e ennreeeeeanes 538
18.2. COMMON CONFIQUIBLION ....eeiiuiiiiieeiiiiie ettt e 539
18.3. JavaServer Faces 1.1 @Nd 1.2 ......ccccueieeiiiiiie et e et e e 540
DelegatingVariableResolver (JSF L.L/1.2) ...ccccvvvievieeeeiiciiieeeee et 540
SpringBeanV ariableResoIVer (JSF L.1/1.2) ....coocieeeeiiiiiee e 541
SpringBeanFacesEL ResoIVEr (JSF 1.2+4) ..o, 541
FaCeSCONEXIULIS ......eviiiiiieee e a e 542
18.4. APaChe SIrULS 1.X @Nd 2.X ...uviiiiieiiie ettt e e s et e e e e eanes 542
ContextLoaderPlUGIN ........cooiiiiiieiiiii e 543
DelegatiNngREJUESEPIOCESSOr ... ..uvvvurrrrirrrrernrnerennnrnenrrenenererrnennnenrrennns 544
DelegatiNngACHIONPIOXY ....cccciiiieiiieiee e e e e e e e e e 544
ACLONSUPPOIT CIBSSES ...ttt 545
18.5. WEDWOIK 2.X 1.iiieieeeiiiiee ettt sttt e e e e sttt e e st e e e ennneeeeanns 545
18.6. TAPESITY 3.X NG 4.X .iiieieeeieiee ettt e e e e e e e aaee 546
Injecting Spring-managed DEaNS ..............uuuuiiiiiiiiiiiiiiiii 547
Dependency Injecting Spring Beansinto Tapestry pages .........cceveeeevvvnen. 548
Component definition fIl@S ...........oovi i 549
Adding aDSLraCt ACCESSOIS ......occvvviieiieeee e e cciieree e e e e s s e e e e e e 550
Dependency Injecting Spring Beans into Tapestry pages - Tapestry 4.x style
............................................................................................................. 552
18.7. FUINEr RESOUICES ....vveiiieeeiiiiiiiiiieee e e e e ettt e e e e e e s s et eereaeesssnnsaaaeeeaeeesaannnes 553
19. Portlet MV C Framework .........ceuueeiiiieee et e e e et 554
S I I 1 1 o (1 1) o SRR 554
Controllers- The CINMVC ..o 555
VIews- The V INIMVC .. 555
WeD-SCOPEA DEANS .......oiiiiiiiee e 556
19.2. The DISpatCherPOrtIEt .........ccevviiiiiiee e 556
19.3. The VIeWRENAErerSEIVIEL ........vvviiiiee et e e e e 558
19.4. CONLIOIEIS .ottt e e e e et e e e e e e e e s snebbeeeeeaeeeeeannes 559
AbstractController and PortletContentGenerator .............ccvveeviveeeeeiiiieeeeninen 559
Other SIMPIe CONLIOIEIS ......eeiiieieeei e 561
Command CONLIOIES .......cooiiiiiie i 561
PortletWrappingCONIOH € .......ooueiiieiiieiee e 562
19.5. Handl€r MAPPINGS ..vvveieeeeei it e e s et e e e e s e s stbre e e e e e e e s s sanrraeeeeeeeesaannes 562
PortletModeHandlerMapping .........coeoiierieeiiiiiee e 563
ParameterHandlerMapPing ..........uueeuururuiminiuininirernernnnrnnnerenr .. 564
PortletM odeParameterHandlerMapping ........c.eeeeeiivieieniiieeee e 564
Adding HandlerTNtErCEPRLONS ........vvvieiiiiiie e 565
HandlerlNterceptorAdapter ........c..vuvieeieeee e 565
ParameterM appinglINtErCEPLON ..........coiiirieeiiiiiee e 565
19.6. Views and resolViNg theM ..........eeeiiii i 566
19.7. Multipart (file upload) SUPPOIT ........eeveeiiiiiieeiiiie et 566
Using the PortletM ultipartRESOIVEr ........ccoeeeieiiieiee e, 567
Handling afileupload in aform .........cccccoooiiiiiiei e, 567
19.8. HANAIING EXCEPLIONS ......oeiiiiiiiiieeiiieee et 570

31

Reference Documentation

XVili



Spring Framework

19.9. Annotation-based controller configuration .............ccccovvveiiee e 571
Setting up the dispatcher for annotation SUPPOIT ........cvvveeeiiiieeeiiieee e 571
Defining a controller with @COoNtroller ............cvvviiviiiiiiiiiiii. 571
Mapping requests with @ReqUEStMaPPING ......vvvvrreeeeiiiiiiiieiee e e 572
Supported handler method arguMENES ..........ocoviiiieeiiiiiee e 573
Binding request parameters to method parameters with @RequestParam .......... 575
Providing alink to data from the model with @M odelAttribute ....................... 576
Specifying attributes to store in a Session with @SessionAttributes ................. 576
Customizing WebDataBinder initialization ..............occovveeiiiiiieiniiie i 577

Customizing data binding with @InitBinder ..............cccceevvviin, 577

Configuring a custom WebBindinglnitializer ..........cccccceveeeiiiiiciiiieneeenn, 577

19.10. Portlet application deploymMent ............cccviiiiiiiireeiiie e 578

RV I 1= (o) o SRR 579
20. Remoting and web ServiCeES USING SPING ...c.vvveeeiiiiiieeiiiiee e 580

P20 I I | g 0o 0o o) o I PP TP T PURR 580

20.2. EXposing ServiceS USING RMI ..o 581
Exporting the service using the RmiServiceExporter .........ccccovveeiiiiiciiienenenn. 581
Linkingintheserviceat theclient ............ccccciieiiie e, 582

20.3. Using Hessian or Burlap to remotely call servicesviaHTTP ......ccceveiiiieeennne 583
Wiring up the DispatcherServlet for Hessian and Co. ........cccceeeeeeiiiiiiiiiieneeenn, 583
Exposing your beans by using the HessianServiceEXporter .........ccccoovvvveeinen. 583
Linking inthe service onthe Client ...........cccccvviviiiiiiiiiiiiiiiireeeneneenren. 584
USING BUI@P e 584
Applying HTTP basic authentication to a service exposed through Hessian or
BUIAD <. e 585

20.4. Exposing services USINg HTTP INVOKEN'S .......cooiuiiiieiiiiiieeiiiee e 585
EXposing the Service ODJECE ..........vvviiiiiei e 585
Linking inthe service at the CIent ... 586

20.5. WED SEIVICES ...oeiiiiiieiie ettt e e e e st e e e e e e e e b b e eeeaaaeeas 587
Exposing servlet-based web servicesusing JAX-RPC ........c.ccocoieiiiieiiiiennnnn, 588
Accessingweb services using JAX-RPC ... 588
Registering JAX-RPC Bean Mappings .......ccccvrvierieeeeiiiiiiieeee e e e e e eeeivineeeeae e 590
Registering your own JAX-RPC Handler ..........ocooiiiiiiiiiiiiieeeeeeeee e 591
Exposing servlet-based web servicesusing JAX-WS ......ccoovceeiiiiiiiiiiineeeeeeenn, 591
Exporting standalone web services using JAX-WS ..o, 592
Exporting web services using the JAX-WS RI's Spring SUPPOrt .............eeeveeenns 593
Accessing web services uSINg JAX-WS ..o 593

20.6. IMS ...t e e e e e et e e e e e e e e e nraeeeaanraeeeaanns 594
Server-side CoNfigUIation ............cooiiiiiiiiiiiee e 595
Client-Side CONIGUIALION .........uvveeiiiiiie et 596

20.7. Auto-detection is not implemented for remote interfaces ........ccccccoevevvvveeneeenn. 597

20.8. Considerations when choosing atechnology ............ooccevviiiiiiiiniiiieiieee e 597

20.9. Accessing RESTful servicesontheClient ............ccccoo 598
RESITEMPIALE ... e e e e e e et rrae e ee e 598

Working With the URI ........ooiiicee e 600
31 Reference Documentation Xix



Spring Framework

Dealing with request and response headers ...........ccccoecvviieeeeeeee e, 601
HTTP MeESSa08 CONVEISION ...coiiiuiiiiieiiiiiieeesitiiee e st e et e st e e e e e 601
StringHttpM essageCoNVErter .........cooovvvvviiiiie e, 602
FOrmHttpM €SSageCONVEITES .....uvvuuriiriiiiiiiiiirieiireereerrrrennrrerrrrrrreerr. 602
ByteArrayHttpM essageCONVEITES ........ccovviiirmiieiieee e 602
MarshallingHttpM essageCONVEIESr ..........ccccviiieiiee e 602
M appingJacksoNHttPM eSSageCONVENTES ..........vvvveiiiieiee e 603
SourceHttpM essageCoONVEITEr .........vveeiiiieeieeeeeice e e 603
BufferedlmageHttpM essageCoNVErter .........occovveviiieieeniiiiee e 603
21. Enterprise JavaBeans (EJB) integralion ..........cccccceviviiiiii 604
P20 00 T 1 g 10 To 8 1 o o PP UPP R OUPRPPPPRRP 604
21.2. ACCESSING EJIBS ...ttt 604
LO00] 0100 o] = R 604
ACCESSING |OCAl SLSBS ...t 605
ACCESSING reMOLE SLSBS ....uuvviiiiiiiiiiiiiiiiiiiiiiiiinirrrenenrrrrenrrrrerrrrnrrrrnr.. 606
Accessing EJB 2.Xx SLSBSVErSUSEIB 3 SLSBS ........covviviiiieiiiiieeeciieee e 607
21.3. Using Spring's EJB implementation SUPPOrt Classes ........c..vveveeeeeeiiiiiiiiieeeeenn. 607
EIB 2.X DBSE CIASSES ....eviiiiiiiii et 607
EJB 3 iNjeCtion INTEFCEPLON .....oiiiiiiiie ittt 609
22. IMS (JAVaAMESSAgE SEIVICE) ....ccciviiieiiee e e e ettt e e e e e e e e e e et e e e e e e e e enaaannaes 611
22728 W | g1 0o 1 o o o SRR 611
22.2.UsiNg Spring JMS ... 611
JMSTEMPIELE ....eeeeiieii ettt e et e e e nbre e s 611
1000101 ot 1 0] = PR 612
Caching Messaging RESOUICES ..........cccuiiieieeiee e et e e e e e e eeineare e e e 613
SiNGIECONNECHIONFACIONY ........vveieiiiiiie e 613
CachingConneCtioNFACtOrY .........ccooiiiiiiiiiieeie e 613
Destination ManaQEMENL ........ccooourrieeiiiriee et e e e e s e 613
Message Listener CONLAINES'S .........uuuurururuiuinnnenenrnrnnnenrnnnenenrrrnrnenrenr. 614
SimpleM essageL i StenerCONtaINEY .........coocuvveeeiiieeee e 615
DefaultM essagel itenerContaiNer ...........ooccveeieiereeeseeiiieeee e 615
Transaction MaNAgEMENT ..........vviiiiiee i i e e e e s s s r e e e e e e s rrrr e e e e e e s e annes 615
22.3.SeNAING AIMESSAE ...ccoueeiieeiiiie ettt 616
USING MESSA0E CONVEITELS ...cceoeiiiiiiieiee e e e ettt e e e e e s etbrr e e e e e e s santrae e e e e e 617
SessionCallback and ProducerCallback ............cccveeiiiiiiiiiiiiiieice e 618
22.4. RECEAIVING IMESSAZE ....ceeieeeeeeeieeeee et e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 618
SyNChroNOUS RECEPLION .....coiuiiiiiiiiiiiie et 618
Asynchronous Reception - Message-Driven POJOS .........cceeeviiiieeeiiiieeeenne, 618
The SessionAwareM essagelistener interface .........ccccovvvevieee e, 619
The MessagelisStenerAdapLEr .......cooiiiiiieiiee e 619
Processing messages Within transactions ...........ccccceeeviiiiiiiieeec e, 621
22.5. Support for JCA Message ENAPOINTS .........vvvveiiiiiieeeiiiiee e 622
22.6. IMS NamMESPACE SUPPOIT ....ceeeeieiiei e e e et e e e e e e e e e e e e e e e e e e e eneannnnn 624
23 IMX e e e e b e e e b e e e e ba e e e e rea s 629
§22C T I | g1 0o 1 o o o PR 629
31 Reference Documentation XX



Spring Framework

23.2. EXporting Your BeaNSTO JIMX .......uuiiiiiieeiiiiiiiiieiee et 629
Creating an MBEaNSEIVET .......oviiiiiiiiie ettt 630
Reusing an existing MBEaANSEIVEY .........uuuuiuiuiuiniminiiinrnnnnrenrnrnnnmrenm. 631
Lazy-initialiZEd MBEANS .........cccuviiieiiee et arae e 632
Automatic registration of MBEaNS ...........ccoviiiiiiiiiiiiieeceeee e 632
Controlling the registration bENAVIOr ...........cccoviiiiiiiiiiiee e, 632

23.3. Controlling the management interface of your beans ...........ccccceevvviiiiiienenenn. 634
The MBeanInfoAssembler Interface .........ccccveeiiiieiiii e 634
Using Source-Level Metadata (JDK 5.0 annotations) .........cccccceveeeiiicivivieneeenn. 634
Source-Level Metadata TYPES ....ooovvviveiiiieeeeeee 636
The AutodetectCapableM BeanlnfoAssembler interface ............occcvvveeeeeeeniins 638
Defining management interfaces using Javainterfaces ............cocceevvieeeennnn. 639
Using MethodNameBasedM BeaninfoAssembler ..........ccccoveiieeiiiiciiieeeeen, 640

23.4. Controlling the ObjectNames for your beans ............cccocccviiveeiie i, 640
Reading ObjectNames from PropertieS ............uvuvviuiiiiiiiiiiiiiiiiiiineiiiieennnnnnnn. 641
Using the MetadataNamingSIralegy ........ccuveeeiivrereiiiiiiee e e 642
The <context:mbean-export/> element ..........cccccoviiiiiiiee e 642

23.5. JSR-160 CONNECLOIS .....eeveiieeeiiiiiiiieieae e e e e ettt e e e e e e e e s sibbbre e e e e e e s e s snbbreeeeeaaeeas 643
SErVer-Side CONNECLONS .......uueeiiieeeiiieiiieiee e e e e e e et e e e e e e e s e st e e e e e e e e e nnnneeees 643
Client-Side CONNECLOIS .....ccoeiiiiiee ittt ie e st e et e s e e e s e e e s seeeeeeanes 644
JMX over Burlap/HESSIaN/SOAP ........oeeiiiiiiiiee e 644

23.6. Accessing MBeans viaProXies .........cccccceevviveiii 645

PG T Lo 1) o= (o] 1 SRR 645
Registering Listenersfor NOtifiCations .........c.c..eeeeiieeeiiiiiiiiiieeee e, 645
PUblishing NOtIfICaHIONS ........ccooiiiiiieiiee e 649

23.8. FUINEr RESOUICES ... .eeieiiiiiee e e ittt e e e e e e sttt e e e e e e e s s seneae e e e e e e e e s snsneneeeeeeeeas 650

B O N O O OSSPSR 651

22z | g 0o 1o o o SRR 651

24.2. Configuring CCl ...cooviiieiii 651
CoNNECLOr CONFIGUIALTION ....coiueiiieeiiiiiee ettt 651
ConnectionFactory configuration in SPring .........ccceeeveeeeeiiicciieeee e 652
Configuring CCl CONNECLIONS .........occiiiieieeeee e e e 653
Using asingle CCl CONNECLION .........uvveiiiiieie ettt 653

24.3. Using Spring's CCl aCCESS SUPPOIT ...veveeeeeiiiiiiiiiiee e e eeeecirireeee e e e e e e snrnrnneeeee e 654
(R w0 o oo 017/= £ o] o USSR 654
The CCITEMPIALE .....ceeveeeieieeeeeieieeeeeeeeeeeeeeeeeeeeeeeeesereeesessseesseesnnsnsnsssesssnssrnnnnnes 655
DA O SUDPPOIT eeeeeeiiiitttee ettt e et e e e e s e e e e e e e s e anbb e e e e aeeeas 656
Automatic output record geNEration .............ccceeeeerirrreerniieeee e e e e 657
SUMMBIY ettt ettt e e e e e e e ettt s s e e e e e e e e e bbb s e e e e e e e e e ebbaeeeas 657
Using a CCl Connection and Interaction directly ..........cccoocvveeiiiiiiniiniiiineeene 658
Example for CCTemMPlate USBOE ......uevveeeeiiiiiiiieiee e e ettt e sarrree e e 659

24.4. Modeling CCI access as operation ODJECES ..........ceveeiiiiiieiiiiieceec e 661
MappiNgRECOrAOPEraLION .......uuuuuururerurnrnineuenenenerrnrnenenrrerenrrerrrrrrrr.. 661
M appiNgCOMMATFEA0PEIALION .......vveerieeeei ittt e s e e e 662
Automatic output record generation .............cceeeeerrrreeesniireee e e e 662

31 Reference Documentation XXi



Spring Framework

RS 01107 Y 662

Example for MappingRecordOperation USAQgE ...........ueveerurreeeriineeeeiniieee s 663

Example for MappingCommAreaOperation USAQE ..........eeevrerrermmemmmemmmmmmmmnmnnnns 665

24.5. TIANSACHONS ....eeiiiiiiie ettt e et e et e e e e et e e e s snsb e e e e e nnbneeeeane 666

B2 1 7= 11 PO 668

P20 W 1 g 10 To 8 1 o o PRSP PPPRRRN 668

25.2. USAJE ...ttt e e e e e e e e 668

Basic MailSender and SimpleMaillMessage USage .........cccvvveeeeeeeeeeccvvvneeeeeeenn, 669

Using the JavaMail Sender and the MimeM essagePreparator .............c.ccceveeennee 670

25.3. Using the JavaMail MimeMessageHelper ..., 671

Sending attachments and inliNE rESOUICES ..........cccvvvvieveeeee i, 671

AtACMENTS .o 671

[NHNETESOUICES ...eiiiiiiieiee ettt e e e e e e 671

Creating email content using atemplating library ..........cccocoveeiiiieiniieeene 672

A Velocity-based eXample ... 673

26. Task Execution and SCNEAUIING ........coiuuiiieiiiiiie e 675

P22 T I | g 0o 1 o o o PR 675

26.2. The Spring TaskEXecutor abStraCtion ...........cccveeeveeeeeiiciiiieree e 675

TASKEXECULOT TYPES ....eeeietieee ettt e e e s 675

USING @ TASKEXECULON ....uvvieiieeeeiiciiiiet et e e e e e sanrrre e e e 677

26.3. The Spring TaskScheduler aDStraction .............cccceeviiiiiieiiiiee e 678

The Trigger INTEITACE ...ovviiiiiiieeeeeieieieeeee ettt eeee e aeeereseeeeeeeeeeeeesesesenesnnnrnnnnnes 678

Trigger impIEMENTAiONS .......coiviiiieiiiii e 679

TaskScheduler implementations ............ccueeeiiiieeriiiiee e 679

26.4. TNE TaSK NGIMESPACE ....vveeiieeeeiieiiiiieriee e e e e et re e e e e e e s s st re e e e e e e e e s sensnraaeeaaaeeas 680

The'scheduler' €ement ..o 680

The 'eXeCULOr" BlEMENT ......eiiiiiiiiee e 680

The 'scheduled-tasks EemMeNnt ...........cooiiiiiiiiiiee e 681

26.5. Annotation Support for Scheduling and Asynchronous Execution .................... 682

The @Scheduled ANNOLALION ........uuuiiiiiiiiiieiie e e eaeeees 682

The @ASYNC ANNOLELION ..o e e e e e e e 683

The <annotation-driven> ElemMent ..o 684

Executor qualification With @ASYNC ........ccooiiiiiiiiiiiiie e 684

26.6. Using the Quartz SCheduler ............oueveeeiiiiiiee e 684

Using the JODDELaIIBEAN ..........ccooiiiiiiiiiiiie et 684

Using the MethodinvokingJobDetail FactoryBean .............ccceeeeeeeeiiiiiecceeeeeenn, 685

Wiring up jobs using triggers and the SchedulerFactoryBean ................cccco...... 686

26.7. USING JDK TIMEr SUPPOIT ......uveeeeiiiiiieeeiiiee e et e e st e e s e e e snnneeenaaee 687

Creating CUSEOM LIMEIS .....vviiiiiiee e ettt e e e e e s e e e e e e e s narraees 687

Using the MethodinvokingTimer TaskFactoryBean ............ccccceevvvveeeeiiiineennne 688

Wrapping up: setting up the tasks using the TimerFactoryBean ........................ 688

27. DyNamicC 1anguage SUPPOIT .......ouureieeiiieeee et e ettt e e e st e e s ennneee s 689

P27 5 W | g1 0o 1o o o PR 689

27.2. A FIrSt €XaMPIE ... ————————— 689

27.3. Defining beans that are backed by dynamic languages ...........c.cccccvveeiiiieeeenne 691
31 Reference Documentation XXii



Spring Framework

L000]0.0101070] 0 [ 000] 000" o L= 691

The <lang:language/> &lement ..........cccoeeiiiiiiii e 692

Refreshablebeans ... 692

Inline dynamic language Source fileS .........cccovvvevieeei i, 695
Understanding Constructor Injection in the context of

dynamic-language-backed beans .............ccccceeeiiiiiciiiecce e, 695

JRUBY DEANS ... 696

GIOOVY DEANS ....vviiiiiei e e e e e e 698

Customising Groovy objectsviaacalback ...........ccccvveveeeeeiiiiiciiieneeeenn, 700

BeanShell Deans ...........ooiiiiii e 701

274, SCEONAITOS ....uveeieeiittee ettt e sttt e ettt e e e bt e e s e bt et e e s bbbt e e e ebbe e e e e nnbeeeeeann 702

Scripted Spring MV C Controllers .........ooouvvviiiiiie e 702

S o 1010 AV L0 = (o = PR 703

27.5.BitS@nd BODS ......coooeiiiiiii e 704

AOP - advising SCripted DEANS ..........uuvuuruiiiiiiiiiiiiiriiierniirerrarenrr—.. 704

oo o 1o [F PP PP PPPRPRPRPPRPN 704

27.6. FUINEr RESOUICES ... e ieeieiieee ettt ee e et e e e e s e e e e e e e e aneneeeeeeeaeeas 705

28. CaChe ADSITACHION ......eviiiiiiie ettt ettt e e e et n e e e e naeeee s 706

22 T8 I | g1 0o 1o o o PR 706

28.2. Understanding the cache abstraction ............ccccccevieeeiiiiiiiiiee e, 706

28.3. Declarative annotation-based CaChiNg ...........coooueieeiiiiiieeiiee e 707

(@)0r= v g1 o [SX= 101010172 (0] o [P 707

Default Key GENEration .........cooiiiiiieeiiiiiee et 708

Custom Key Generation DeClaration ...........ccccceeeiiiciiiieieneee e 708

Conditional CaChing ........ccccuviiiiiiee e 709

Available caching SpEL evaluation CONMEXt ..........cceveeriirreeriiiiieeeiineeenn 709

@CAChEPUL @NNOLALION .....veeeeeee et e et e e et e e e e e e e e e e e e eeeanas 710

@CaCheEVICt anNNOAiON .........ovuiiiiiiiiiieee e e e e e eeaaaans 710

[@2@r= ot g1 a0 =0T 0o = (o) o R 711

Enable caching annotations .............cooiiiiiiiiiiiie e 711

USING CUSLOM @NNOLELTIONS ....eeeeeiiiiiiiiieee e e st e e e e e e e eteeeee e e e e e e s e eeneeeeeeaeeeas 714

28.4. Declarative XML-based Caching ...........ccooviiiiiiiiiiie e 715

28.5. Configuring the CaChe SIOrage ...........eevviiiiiie i 716

JDK ConcurrentMap-based Cache ..........cccvveeieeiiiiciiiecee e 716

Ehcache-based Cathe ..........cooviiiiiiiiie e 716

Dealing with caches without abacking StOre .............uvvviviiiiiiiiiiiiiii. 716

28.6. Plugging-in different back-end caches ...........cccooeeiiiiiiiiii e 717

28.7. How can | set the TTL/TTI/Eviction policy/XXX feature? ..........ccoccevviverennnns 717

RV LI o] o 1= g o [ Lot ESRR 718

AL ClasSiC SPIING USAOE .....eeeieiiiiiiee ettt 719

AL ClassiC ORM USAQE .......coccuriiiiiieeeeiieiititeeee e e e e e sestntre e e e e e e s s s seantbrereeaaeeeeennssrnees 719

[ 10T 7= (= USSR 719

The HIbErNalE€TEMPIALE .......cvvvveieeeieieieieeeiereieeeieeeeeeeeneereseeereeenneenrrnnnnnnne 719

Implementing Spring-based DAOs without callbacks ...............c.ccueee. 720

B 0 SRS 721

31 Reference Documentation xXiii



Spring Framework

JdoTemplate and JAODAOSUPPOIT ........cccvvivieieeeee e 721
TP A e 722
JpoaTemplate and JpaDaOSUPPOIT ........eveeerrrerererererernrnrerrreerrrerenrrnrrnnnnnn. 722
A.2.ClassiC SPriNg MV C ... e e e 723
F R N 1V ST U o T SRR 724
IMSTEMPIGLE ... e e e e e e e e e e aanes 724
Asynchronous Message RECEPLION .........evveiiiiiiieiiiiiie et 724
CONNECLIONS ...eiiiiiiiee ettt et e e e st e e s st e e e s nnr e e e e enseeeeeeansneeeeanes 725
Transaction ManNagEMENT ............eeeiiiuriieiiiiiie e e e e 725
B. ClassiC SPring AOP USBOE .....uuuuuruiuiuiuiuiuiuininrnennnnneennenrnnnmernmmrm.. 726
B.1. POINtCUt AP iN SPING .o e e e 726
CONCEPLS ...t e e e a e e 726
OperationS 0N POINLCULS .......uvveiieeeeiiiiiiiee e e e e e e sese e e e e e e s e s e e e e e e e e esnanreees 727
ASPECLI EXPreSSION POIMECULS .......vvveeeiiiieieeeiiieee e st e e s e e e e e e e e e 727
Convenience pointcut implementations ............ccccccevvveeeeeiie 727
SEALTIC POINTCULS ...t e e 727
DYNaMIC POINTCULS .......eeeiiieeeiiieiiiiiee e e e e et e e e e e e e et e e e e e e e e neeeeeeas 729
POINECUL SUPEICIASSES ..vvvviiiieeeeiiiiiiiiet et s et e e e e e e ereaa e 729
CUSEOM POIMECULS ....eeeiteeee ettt e e e e e e e e s e e e e annr e e e e e 730
B.2. AQVICE AP iN SPING oo e 730
AQVICE IITECYCIES .. 730
AQVICEYPES N SPIINQ .evvvvrrruiiininiiiniuriiuiuiuerrrrrrnrrrrrrrrr———————————.- 730
Interception arouNd 80VICE .........cuveiieiiiiiee e 730
BEfOr@ aVICR ...ooeeeeee e 731
TRIOWS BOVICE ..ottt 732
After REtUMNING 80VICE .......vviiiiiiiiee et 733
INtrOdUCION @OVICE ... 734
B.3. AAVISOr APl N SPIING .eeeeeiiiiiiieiiiiie et 737
B.4. Using the ProxyFactoryBean to create AOP PrOXIES .........uvvvvvrvrmemrrmmmmermmmnmnnnnne 737
T Lo OO P PPPPPPPPPPPRt 737
JaVaBEaN PrOPEITIES ...coeie et e e e e e e e e e e 738
JDK- and CGLIB-based PrOXi€S ........cccecvviiiiiiee e iectiiee e e e e e 739
ProxXying iNTEITACES .......ccoiiiiiiiiiiiie et 740
ProXYiNg ClaSSES ....cuuiiiiiieie et e a e 742
USING 'GIODEI" @OVISOIS ....eeeiiiiiiiieiiiiee et 742
B.5. Concise ProxXy AefiNITIONS .........uuuuuururuiuinrninrinninnnrnenenrnrnrrenr————. 743
B.6. Creating AOP proxies programmatically with the ProxyFactory ....................... 744
B.7. Manipulating advised ODJECES .........ooviiiiiiiiiiiee e 744
B.8. Using the "autoproxXy" faCility ..........ccccovierieeiiiicee e 746
Autoproxy bean definitions ............oooiiiiii i 746
BeanNameAULOPrOXYCIEaLON ..........oeeviveeiiiiiiieieeeeereeeiien s e e e e e e eeereenneeeeas 746
DefaultAdVviSOTAULOPIOXYCIEEION .......cuvvveeeiiiieee et 747
AbstractAdviSOrAULOPIOXYCIEALON .......uuvvvrvevereerrrnrnrnnerrenenrnennnernnenmnnnnne 748
Using metadata-driven autO-ProXYiNg .........occccvvueeeeeeeesiisiiineeeeeeessssninneeeeaeens 748
B.9. USING TAIGEISOUITES ......ceiiiuiiiieeiiiiiee et e e sttt e e e s 750
31 Reference Documentation XXiV



Spring Framework

Hot swappable target SOUICES .........uvveiiieee ittt 751
POOIING tArgEL SOUMCES .....co.ieeiieeiiieie ettt 752
Prototype target SOUICES .......covveeiiieeeiieeiiiee s e e et e e e e e e e e e e e e e eeeannaas 753
ThreadL 0Cal targel SOUICES .......uviiiiiee e i it e e e e s s et e e e e e e e s s r e e e e e s e eanes 753
B.10. Defining NEW ACVICELYPES ...cooiiviiieeiiiieee et 754
B.11. FUMNEr FESOUICES .......vviieiiiiiiee e ettt et e e e e 754
C. XML Schemarbased Configuralion ............coocueeieiiiiieeeiiii e 756
(@35 1 11 7o [FTox i o [ SRR OUPRPPPRRR 756
C.2. XML Schemarbased CONfiQUIation ............ccueeeeriieeeeiiiiieee e siieee e esineee e 757
Referencing the SChEMES .........uuiuiuiiiiiiiiiiiiiiiiirieirererer e 757

The Util SChema .........ooo s 758
SULTICONSEANT> ... 758
<Util:property-path/> ... 760

<UL PIrOPEITIES> .oeiiiee e e e rrrre e e e e e 761
SULTLTISH> e e 762
SULTLIMBIS e e e e e e e e e aaa e 763

QUL SBL > e 763

THEJEE SCNEMA ... e e e e eanes 764
<jee:jndi-lookup/> (SIMPIE) .....veeieiiiiei e 764
<jeejndi-lookup/> (with single INDI environment setting) .........cccc........ 765
<jee;jndi-lookup/> (with multiple INDI environment settings) ................. 765
<jeerjndi-lookup/> (ComMpleX) .ocooveveeiiei 766
<jeelocal-glsh/> (SIMPIE) ...ccocuviieeeciiiie et 766
<jee:local-9Sh/> (COMPIEX) ...eeeeiieeeeiieeee e 766
<JEEITEMOLE-SS/> .o 767

Thelang SCheMAL .........cooi e 767

THE JMS SCNEIMA .....iviiiiiie e e e e e e eanes 768

The tx (transaction) SCNEMA ..........coiiiiiiie e 768

ThE @0P SCNEMA ....ceeeiieeieeeeeeeieeeee ettt eeeeeeeeeeeeeeseeseeeeseaesessssennnsnennnnnes 769

The CONtEXE SCNEMAL ..coiee i e e e e s e eanes 769
<property-placenolder/> ... 770
<aNNOtatioN-CoNfIQI> ..o 770
<COMPONENE-SCAIN™ ... ettt e ettt e e ee e e e 770
<I0B0-TIME-WEBVEIT> ...t 770
<SPriNG-CONFIGQUIEA/IS ....uiiiiiiiiiie ettt e e 770
<MDbEAN-EXPOI/> ..o 770

THE OO0l SCNEMA ....vvviiiiie e e e e e e e s eanes 771
ThebDeanS SCNEMA ..........oo e 771

D. Extensible XML aUthOring ........ccoeiiieoiiiiiiieiee et e e 772
9 200 I 1 11 [ o 1 o o PRSP 772
D.2. Authoring the schema ... 772
D.3. Coding a NamespaCeHaNAIEr ..........ooooiiiiiiiiiiiee e 774
D.4. Coding a BeanDefiNitiONParSer ............uuvuuurunuimmmininirrnrnnnenmnrnrnrmm. 774
D.5. Registering the handler and the SChemMa ...........cooviciiiiiiie e, 775
'META-INF/Spring.nandlers’ .........ccoeeiiiiiic e 775

Reference Documentation XXV



Spring Framework

'META-INF/SPring.SChEMAS' .......ccoiiiiiiiieec e 776

D.6. Using a custom extension in your Spring XML configuration .............ccccceevueee. 776
DV L= (= == ] o - 777
Nesting custom tags within CUStOM tags ........ccveeeveeeeiiiiciiieiecee e, 777
Custom attributes on 'normal’ eements ...........oooociiiiiee e 780

D.8. FUINEr RESOUICES ........vvvieiiieiiee ettt ettt e e e 782
E. SPring-beans-2.0.0t0 ..........cooiiiiiiiiiiiii e 783
L o ] 1o 1 1 [ OSSP 794
Nt I 1 014 (T [ (o PR 794
2 I = o] o = o P 794
F.3. The escapeBody tag ........ooccviiiiiiieee e 795
F.4. The hasBiNOEITOrSTag ......cooovriieiiiiee et 795
F.5. The NtMIESCAPETAQ ...eeeeei ittt e e e e 795
F.6. TNEMESSAgE LAY ... veeeieeeeee ettt ettt 796
F.7. The NeStedPati tag ...........uuuuiuiuiiiiiiiiiiiiiieiiiiiiiirieeneneeerrnrrerrrrrrrrrrrrrerrrrrrrrnnnnne 796
F.8. TNEThEME A .....eeeie i 797
e T I o = o 1 = [P 797
O I TN U5 = o [PPSR 798
F. 11 TRE VAL T80 ..ooeeeeeeeeeieee et 798
G. SPHNG-FOMMLEIA .o e s e e e e e e et reees 800
L I [ 11 0o 1 o o o RS 800
G.2. ThecheckboX tag ....cooovvveeeiee 800
G.3. The ChECKDOXES LAY ...ieiuveeiee it 802
L TN = g 0] £ = R 804
LTSI I 1= o 1 4 = o [ ERR PR 805
G.6. TRENIAUEN TG ..ot 807
G.7. TREINPULTAQ .oeieeeiei it e e e e s e e e e e e e e s e b e e e eaeeas 807
G.8. THETADE! 18 ...eeieiiiiiieeie e 809
G.9. TheoplioNtag ....cccoeeeeeeee e 811
G.10. THE OPLIONS LAY ....vvveeeeiuiteiee et e ettt ettt e e e e e e e e e e snbnee e e e 812
L 1 o] 7= ==Y o = PR 813
G.12. The radioDULLON TAQ ....vvvereeieee e i e e e e e e e rnae e e e e e 815
G.13. The radioDUIEONS TAG ......vvveeiiie e 817
O SR 1= ot B = o [T 819
G.15. TRETEXTArEATAG .. vvveeeiereiee et ee ettt ettt ettt e e e e e e e e e e e aaes 821

Reference Documentation XXVi



Part |. Overview of Spring Framework

The Spring Framework is a lightweight solution and a potential one-stop-shop for building your
enterprise-ready applications. However, Spring is modular, allowing you to use only those parts that you
need, without having to bring in the rest. Y ou can use the 10C container, with Struts on top, but you can
also use only the Hibernate integration code or the JDBC abstraction layer. The Spring Framework
supports declarative transaction management, remote access to your logic through RMI or web services,
and various options for persisting your data. It offers a full-featured MV C framework, and enables you to
integrate AOP transparently into your software.

Spring is designed to be non-intrusive, meaning that your domain logic code generally has no
dependencies on the framework itself. In your integration layer (such as the data access layer), some
dependencies on the data access technology and the Spring libraries will exist. However, it should be easy
to isolate these dependencies from the rest of your code base.

This document is areference guide to Spring Framework features. If you have any requests, comments, or
questions on this document, please post them on the user mailing list or on the support forums at
http://forum.springsource.org/.



http://forum.springsource.org/

Spring Framework

1. Introduction to Spring Framework

Spring Framework is a Java platform that provides comprehensive infrastructure support for developing
Java applications. Spring handles the infrastructure so you can focus on your application.

Spring enables you to build applications from “plain old Java objects’ (POJOs) and to apply enterprise
services non-invasively to POJOs. This capability applies to the Java SE programming model and to full
and partial Java EE.

Examples of how you, as an application devel oper, can use the Spring platform advantage:

» Make a Java method execute in a database transaction without having to deal with transaction APIs.
» Make alocal Java method a remote procedure without having to deal with remote APIs.

* Make alocal Java method a management operation without having to deal with IMX APIs.

» Makealoca Java method a message handler without having to deal with IMS APIs.

1.1 Dependency Injection and Inversion of Control

Background

“The question is, what aspect of control are [they] inverting?” Martin Fowler posed this question
about Inversion of Control (IoC) on his site in 2004. Fowler suggested renaming the principle to
make it more self-explanatory and came up with Dependency | njection.

For insight into loC and DI, refer to Fowler's article at
http://martinfowler.com/articles/injection.html.

Java applications -- a loose term that runs the gamut from constrained applets to n-tier server-side
enterprise applications -- typically consist of objects that collaborate to form the application proper. Thus
the objects in an application have dependencies on each other.

Although the Java platform provides awealth of application development functionality, it lacks the means
to organize the basic building blocks into a coherent whole, leaving that task to architects and developers.
True, you can use design patterns such as Factory, Abstract Factory, Builder, Decorator, and Service
Locator to compose the various classes and object instances that make up an application. However, these
patterns are simply that: best practices given a name, with a description of what the pattern does, where to
apply it, the problems it addresses, and so forth. Patterns are formalized best practices that you must
implement yourself in your application.

The Spring Framework Inversion of Control (1oC) component addresses this concern by providing a

31 Reference Documentation 2


http://martinfowler.com/articles/injection.html

Spring Framework

formalized means of composing disparate components into a fully working application ready for use. The
Spring Framework codifies formalized design patterns as first-class objects that you can integrate into
your own application(s). Numerous organizations and institutions use the Spring Framework in this
manner to engineer robust, maintainable applications.

1.2 Modules

The Spring Framework consists of features organized into about 20 modules. These modules are grouped
into Core Container, Data Access/Integration, Web, AOP (Aspect Oriented Programming),
Instrumentation, and Test, as shown in the following diagram.

' ™y
Spring Framework Runtime
! o 5
Data Access/Integration Web
(MVC / Remoting)
Web Servlet
., v -, A
™ ™
Portlet Struts
[ Transactions J L J )
s AN 4
il - ™
AOP ] Aspects ] [ Instrumentation
b \ J

Core Container

Expression
Language

( - ]

Overview of the Spring Framework

Beans Core Context

Core Container

The Core Container consists of the Core, Beans, Context, and Expression Language modul es.

31 Reference Documentation 3



Spring Framework

The Core and Beans modules provide the fundamental parts of the framework, including the 1oC and
Dependency Injection features. The BeanFact ory is a sophisticated implementation of the factory
pattern. It removes the need for programmatic singletons and allows you to decouple the configuration
and specification of dependencies from your actual program logic.

The Context module builds on the solid base provided by the Core and Beans modules: it is a means to
access objects in a framework-style manner that is similar to a JNDI registry. The Context module
inherits its features from the Beans module and adds support for internationalization (using, for example,
resource bundles), event-propagation, resource-loading, and the transparent creation of contexts by, for
example, a servlet container. The Context module also supports Java EE features such as EJB, IMX ,and
basic remoting. The Appl i cat i onCont ext interface isthe focal point of the Context module.

The Expression Language module provides a powerful expression language for querying and
manipulating an object graph at runtime. It is an extension of the unified expression language (unified
EL) as specified in the JSP 2.1 specification. The language supports setting and getting property values,
property assignment, method invocation, accessing the context of arrays, collections and indexers, logical
and arithmetic operators, named variables, and retrieval of objects by name from Spring's 10C container.
It also supports list projection and selection as well as common list aggregations.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JM S and Transaction modules.

The JDBC module provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding
and parsing of database-vendor specific error codes.

The ORM module provides integration layers for popular object-relational mapping APIs, including JPA,
JDO, Hibernate, and iBatis. Using the ORM package you can use all of these O/R-mapping frameworks
in combination with all of the other features Spring offers, such as the simple declarative transaction
management feature mentioned previously.

The OXM module provides an abstraction layer that supports Object/XML mapping implementations for
JAXB, Castor, XMLBeans, JiBX and X Stream.

The Java Messaging Service (JMS) module contains features for producing and consuming messages.

The Transaction module supports programmatic and declarative transaction management for classes that
implement special interfaces and for all your POJOs (plain old Java objects).

Web

The Web layer consists of the Web, Web-Servlet, Web-Struts, and Web-Portlet modules.

Spring's Web module provides basic web-oriented integration features such as multipart file-upload
functionality and the initialization of the 1oC container using servlet listeners and a web-oriented

31 Reference Documentation 4



Spring Framework

application context. It also contains the web-related parts of Spring's remoting support.

The Web-Serviet module contains Spring's model-view-controller (MVC) implementation for web
applications. Spring's MV C framework provides a clean separation between domain model code and web
forms, and integrates with al the other features of the Spring Framework.

The Web-Sruts module contains the support classes for integrating a classic Struts web tier within a
Spring application. Note that this support is now deprecated as of Spring 3.0. Consider migrating your
application to Struts 2.0 and its Spring integration or to a Spring MV C solution.

The Web-Portlet module provides the MVC implementation to be used in a portlet environment and
mirrors the functionality of Web-Servlet module.

AOP and Instrumentation

Spring's AOP module provides an AOP Alliance-compliant aspect-oriented programming implementation
allowing you to define, for example, method-interceptors and pointcuts to cleanly decouple code that
implements functionality that should be separated. Using source-level metadata functionality, you can
aso incorporate behavioral information into your code, in amanner similar to that of .NET attributes.

The separate Aspects modul e provides integration with AspectJ.
The Instrumentation module provides class instrumentation support and classloader implementations to

be used in certain application servers.

Test

The Test module supports the testing of Spring components with JUnit or TestNG. It provides consistent
loading of Spring ApplicationContexts and caching of those contexts. It also provides mock objects that
you can use to test your code in isolation.

1.3 Usage scenarios

The building blocks described previously make Spring alogica choice in many scenarios, from applets to
full-fledged enterprise applications that use Spring's transaction management functionality and web
framework integration.

31 Reference Documentation 5



Spring Framework

- |l | Integration
Form Muiltipart Dynamic with JSP,
Binding to
Controllers Resolver Domain Model Velocity, SLT.
| | | | PDF Excel
WebApplication Context
Sending Remote
Email Access
Custom domain logic
Declarative Transactions
for POJOs
ORM Mappings
Tomcat Servlet Container Custom DAO/Repositories

Typical full-fledged Spring web application

Spring's declarative transaction management features make the web application fully transactional, just as
it would be if you used EJB container-managed transactions. All your custom business logic can be
implemented with simple POJOs and managed by Spring's 10C container. Additional services include
support for sending email and validation that is independent of the web layer, which lets you choose
where to execute validation rules. Spring's ORM support is integrated with JPA, Hibernate, JDO and
iBatis; for example, when using Hibernate, you can continue to use your existing mapping files and
standard Hibernate Sessi onFact ory configuration. Form controllers seamlessly integrate the
web-layer with the domain model, removing the need for Act i onFor s or other classes that transform

HTTP parameters to values for your domain model.

31 Reference Documentation 6



Spring Framework

Web frontend using
Struts or Tapestry

WebApplication Context

Custom domain logic

Declarative Transactions

for POJOs
ORM Mappings
Tomcat Serviet Container Custom DAO/Repositories

Spring middle-tier using a third-party web framework

Sometimes circumstances do not allow you to completely switch to a different framework. The Spring
Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing
front-ends built with WebWork, Struts, Tapestry, or other Ul frameworks can be integrated with a
Spring-based middle-tier, which allows you to use Spring transaction features. You simply need to wire
up your business logic using an Appl i cat i onCont ext and use aWebAppl i cati onCont ext to
integrate your web layer.

31 Reference Documentation 7



Spring Framework

JAX RPC Client Hessian Client Burlap Client RMI Client

Transparent Remote Access

Custom domain logic

Tomcat Serviet Container

Remoting usage scenario

When you need to access existing code through web services, you can use Spring's Hessi an-,
Burl ap-, Rm - or JaxRpcProxyFact ory classes. Enabling remote access to existing applications
is not difficult.

31 Reference Documentation 8



Spring Framework

EJB Access Layer
fusing Sisbinvokers)

Spring-managed E.JBs
{using AbstractEnterpriseBean)

Application Server (e.g. WebSphere, WebLogic, JBoss)

EJBs - Wrapping existing POJOs

The Spring Framework also provides an access and abstraction layer for Enterprise JavaBeans, enabling
you to reuse your existing POJOs and wrap them in stateless session beans for use in scalable, fail-safe
web applications that might need declarative security.

Dependency Management and Naming Conventions

Dependency management and dependency injection are different things. To get those nice features of
Spring into your application (like dependency injection) you need to assemble al the libraries needed (jar
files) and get them onto your classpath at runtime, and possibly at compile time. These dependencies are
not virtual components that are injected, but physical resourcesin afile system (typically). The process of
dependency management involves locating those resources, storing them and adding them to classpaths.
Dependencies can be direct (e.g. my application depends on Spring at runtime), or indirect (e.g. my
application depends on commons-dbcp which depends on comons-pool ). The indirect
dependencies are also known as "transitive" and it is those dependencies that are hardest to identify and
manage.

If you are going to use Spring you need to get a copy of the jar libraries that comprise the pieces of Spring
that you need. To make this easier Spring is packaged as a set of modules that separate the dependencies
as much as possible, so for example if you don't want to write a web application you don't need the
spring-web modules. To refer to Spring library modules in this guide we use a shorthand naming
convention spri ng-* or spring-*.jar, where"*" represents the short name for the module (e.g.
spring-core, spring-webmvc, spring-j s, etc.). The actual jar file name that you use may be

31 Reference Documentation 9



Spring Framework

in this form (see below) or it may not, and normally it also has a version number in the file name (e.g.
spring-core-3.0.0. RELEASE. j ar).

n general, Spring publishes its artifacts to four different places:

On the community download site http://www.springsource.org/downloads/community. Here you find
all the Spring jars bundled together into a zip file for easy download. The names of the jars here since
version 3.0 areintheformor g. spri ngf ranewor k. *- <ver si on>. j ar.

Maven Central, which is the default repository that Maven queries, and does not require any special
configuration to use. Many of the common libraries that Spring depends on also are available from
Maven Central and alarge section of the Spring community uses Maven for dependency management,
so this is convenient for them. The names of the jars here ae in the form
spring-*-<versi on>. j ar andthe Maven groupldisor g. spri ngf r amewor k.

The Enterprise Bundle Repository (EBR), which is run by SpringSource and also hosts all the libraries
that integrate with Spring. Both Maven and lvy repositories are available here for all Spring jars and
their dependencies, plus a large number of other common libraries that people use in applications with
Spring. Both full releases and also milestones and development snapshots are deployed here. The
names of the jar files ae in the same form as the community download
(org. springframework. *-<version>. jar), and the dependencies are also in this "long"
form, with external libraries (not from SpringSource) having the prefix com spri ngsour ce. See
the FAQ for more information.

In a public Maven repository hosted on Amazon S3 for development snapshots and milestone releases
(a copy of the final releases is also held here). The jar file names are in the same form as Maven
Central, so this is a useful place to get development versions of Spring to use with other libraries
depoyed in Maven Central.

So the first thing you need to decide is how to manage your dependencies. most people use an automated
system like Maven or lvy, but you can also do it manually by downloading all the jars yourself. When
obtaining Spring with Maven or vy you have then to decide which place you'll get it from. In generd, if
you care about OSGI, use the EBR, since it houses OSGi compatible artifacts for al of Spring's
dependencies, such as Hibernate and Freemarker. If OSGi does not matter to you, either place works,
though there are some pros and cons between them. In general, pick one place or the other for your
project; do not mix them. This is particularly important since EBR artifacts necessarily use a different
naming convention than Maven Central artifacts.

Table 1.1. Comparison of Maven Central and SpringSource EBR Repositories

Feature Maven Central EBR

OSGi Compatible Not explicit Yes

Number of Artifacts Tens of thousands; all kinds Hundreds, those that Spring
integrates with

31 Reference Documentation 10


http://www.springsource.org/downloads/community
http://www.springsource.com/repository/app/faq

Spring Framework

Feature

Maven Central

EBR

Consistent Naming Conventions

Naming Convention: Groupld

Naming Convention: Artifactld

Naming Convention: Version

Publishing

Quality Assurance

Hosting

Search Utilities

Integration with SpringSource
Tools

No

Varies. Newer artifacts often use
domain name, e.g. org.df4j.
Older ones often just use the
artifact name, e.g. log4j.

Varies. Generally the project or
module name, using a hyphen "-"
Separator, e.g. spring-core, logj4.

Varies. Many new artifacts use
mmm or mmm.X (with
m=digit, X=text). Older ones use
m.m. Some neither. Ordering is
defined but not often relied on,
so not strictly reliable.

Usually automatic via rsync or
source control updates. Project
authors can upload individual
jarsto JRA.

By policy. Accuracy is
responsibility of authors.

Contegix. Funded by Sonatype
with several mirrors.

Various

Integration through STS with
Maven dependency management

Spring Dependencies and Depending on Spring

Yes

Domain name of origin or main
package root, eg.
org.springframework

Bundle Symbolic Name, derived
from the main package root, e.g.
org.springframework.beans.  If
the jar had to be patched to
ensure OSGi compliance then
com.springsource is appended,
e.g.

com.springsource.org.apache.log4j

OSGi version number m.m.m.X,
e.g. 3.0.0.RC3. The text qualifier
imposes alphabetic ordering on
versions with the same numeric
values.

Manual (JRA processed by
SpringSource)

Extensive for OSGi manifest,
Maven POM and lvy metadata.
QA performed by Spring team.

S3 funded by SpringSource.

http://www.Springsource.com/repository

Extensive integration through
STS with Maven, Roo,
CloudFoundry

Although Spring provides integration and support for a huge range of enterprise and other external tools,
it intentionally keeps its mandatory dependencies to an absolute minimum: you shouldn't have to locate

31

Reference Documentation

11


http://www.springsource.com/repository

Spring Framework

and download (even automatically) a large number of jar libraries in order to use Spring for simple use
cases. For basic dependency injection there is only one mandatory external dependency, and that is for
logging (see below for a more detailed description of logging options).

Next we outline the basic steps needed to configure an application that depends on Spring, first with
Maven and then with Ivy. In al cases, if anything is unclear, refer to the documentation of your
dependency management system, or look at some sample code - Spring itself uses lvy to manage
dependencies when it is building, and our samples mostly use Maven.

Maven Dependency Management

If you are using Maven for dependency management you don't even need to supply the logging
dependency explicitly. For example, to create an application context and use dependency injection to
configure an application, your Maven dependencies will look like this:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf r anewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<versi on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
</ dependency>
</ dependenci es>

That's it. Note the scope can be declared as runtime if you don't need to compile against Spring APIs,
which istypically the case for basic dependency injection use cases.

We used the Maven Central naming conventions in the example above, so that works with Maven Central
or the SpringSource S3 Maven repository. To use the S3 Maven repository (e.g. for milestones or
developer snaphots), you need to specify the repository location in your Maven configuration. For full
releases:

<repositories>
<reposi tory>
<i d>com springsource. repository. maven.rel ease</i d>
<url >http:// maven. spri ngframewor k. org/ rel ease/ </ url >
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

For milestones:

<repositories>
<reposi tory>
<i d>com springsource.repository. maven. m | est one</i d>
<url >http:// maven. spri ngframewor k. org/ m | est one/ </ url| >
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

And for snapshots.

3.1 Reference Documentation 12



Spring Framework

<repositories>
<r eposi tory>
<i d>com spri ngsource. reposi tory. maven. snapshot </ i d>
<url >http:// maven. spri ngf ramewor k. or g/ snapshot / </ ur| >
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
</repositories>

To use the SpringSource EBR you would need to use a different naming convention for the dependencies.
The names are usually easy to guess, e.g. inthiscaseitis:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf r anewor k</ gr oupl d>
<artifactld>org.springfranmework. context</artifactld>
<ver si on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
</ dependency>
</ dependenci es>

Y ou also need to declare the location of the repository explicitly (only the URL isimportant):

<repositories>
<r eposi tory>
<i d>com spri ngsource. reposi tory. bundl es. rel ease</i d>
<url>http://repository.springsource.conf maven/ bundl es/rel ease/ </ url >
</repository>
</repositories>

If you are managing your dependencies by hand, the URL in the repository declaration above is not
browseable, but there is a user interface at http://www.springsource.com/repository that can be used to
search for and download dependencies. It also has handy snippets of Maven and Ivy configuration that
you can copy and paste if you are using those tools.

Ivy Dependency Management
If you prefer to use lvy to manage dependencies then there are similar names and configuration options.

To configure lvy to point to the SpringSource EBR add the following resolvers to your
i vysettings. xm :
<resol ver s>
<url name="com spri ngsource.repository. bundl es. rel ease">
<ivy pattern="http://repository.springsource.coniivy/bundl es/rel ease/
[organi sation]/[modul e]/[revision]/[artifact]-[revision].[ext]" />
<artifact pattern="http://repository.springsource.coniivy/bundles/rel ease/
[organi sation]/[nmodul e]/[revision]/[artifact]-[revision].[ext]" />
</url>
<url name="com springsource.repository.bundl es. external ">
<ivy pattern="http://repository.springsource.conlivy/bundl es/external/

[organi sation]/[modul e]/[revision]/[artifact]-[revision].[ext]" />
<artifact pattern="http://repository.springsource.conm ivy/bundl es/external/

31 Reference Documentation 13


http://www.springsource.com/repository
http://ant.apache.org/ivy

Spring Framework

[organi sation]/[modul e]/[revision]/[artifact]-[revision].[ext]" />
</url>

</resol ver s>

The XML above is not valid because the lines are too long - if you copy-paste then remove the extraline
endings in the middle of the url patterns.

Once lvy is configured to look in the EBR adding a dependency is easy. Simply pull up the details page
for the bundle in question in the repository browser and you'll find an vy snippet ready for you to include
in your dependencies section. For example (ini vy. xm ):

<dependency org="org. spri ngfranmewor k"
name="or g. spri ngf ramewor k. core" rev="3.0. 0. RELEASE" conf="conpil e->runtime"/>

Logging

Logging is a very important dependency for Spring because a) it is the only mandatory external
dependency, b) everyone likes to see some output from the tools they are using, and ¢) Spring integrates
with lots of other tools all of which have a'so made a choice of logging dependency. One of the goals of
an application developer is often to have unified logging configured in a central place for the whole
application, including all external components. This is more difficult than it might have been since there
are so many choices of logging framework.

The mandatory logging dependency in Spring is the Jakarta Commons Logging APl (JCL). We compile
against JCL and we also make JCL Log objects visible for classes that extend the Spring Framework. It's
important to users that all versions of Spring use the same logging library: migration is easy because
backwards compatibility is preserved even with applications that extend Spring. The way we do thisis to
make one of the modules in Spring depend explicitty on commons- | oggi ng (the canonical
implementation of JCL), and then make all the other modules depend on that at compile time. If you are
using Maven for example, and wondering where you picked up the dependency on
commons- | oggi ng, then it is from Spring and specifically from the central module called
spring-core.

The nice thing about cormons- | oggi ng isthat you don't need anything else to make your application
work. It has a runtime discovery algorithm that looks for other logging frameworks in well known places
on the classpath and uses one that it thinks is appropriate (or you can tell it which one if you need to). If
nothing else is available you get pretty nice looking logs just from the JDK (java.util.logging or JUL for
short). You should find that your Spring application works and logs happily to the console out of the box
in most situations, and that's important.

Not Using Commons Logging

Unfortunately, the runtime discovery algorithm in conmons- | oggi ng, while convenient for the
end-user, is problematic. If we could turn back the clock and start Spring now as a new project it would

3.1 Reference Documentation 14



Spring Framework

use a different logging dependency. The first choice would probably be the Simple Logging Facade for
Java (SLF4J), which is also used by a lot of other tools that people use with Spring inside their
applications.

Switching off conmons- | oggi ng is easy: just make sure it isn't on the classpath at runtime. In Maven
terms you exclude the dependency, and because of the way that the Spring dependencies are declared, you
only have to do that once.

<dependenci es>
<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<ver si on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
<excl usi ons>
<excl usi on>
<gr oupl d>conmmons- | oggi ng</ gr oupl d>
<artifactld>comons-| oggi ng</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>

Now this application is probably broken because there is no implementation of the JCL APl on the
classpath, so to fix it a new one has to be provided. In the next section we show you how to provide an
alternative implementation of JCL using SLF4J as an example.

Using SLF4J

SLFAJis a cleaner dependency and more efficient at runtime than comrmons- | oggi ng because it uses
compile-time bindings instead of runtime discovery of the other logging frameworks it integrates. This
also means that you have to be more explicit about what you want to happen at runtime, and declare it or
configure it accordingly. SLF4J provides bindings to many common logging frameworks, so you can
usually choose one that you already use, and bind to that for configuration and management.

SLF4J provides bindings to many common logging frameworks, including JCL, and it also does the
reverse: bridges between other logging frameworks and itself. So to use SLF4J with Spring you need to
replace the conmons- | oggi ng dependency with the SLF4J-JCL bridge. Once you have done that then
logging calls from within Spring will be trandated into logging cals to the SLF4J API, so if other
librariesin your application use that API, then you have a single place to configure and manage logging.

A common choice might be to bridge Spring to SLF4J, and then provide explicit binding from SLF4J to
Log4J. You need to supply 4 dependencies (and exclude the existing conmons- | oggi ng): the bridge,
the SLF4J API, the binding to Log4J, and the Log4J implementation itself. In Maven you would do that
like this

<dependenci es>
<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<versi on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>
<excl usi ons>

31 Reference Documentation 15


http://www.slf4j.org

Spring Framework

<excl usi on>
<gr oupl d>conmmons- | oggi ng</ gr oupl d>
<artifactld>comons-| oggi ng</artifactld>
</ excl usi on>

</ excl usi ons>

</ dependency>

<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>jcl-over-slfdj</artifactld>
<versi on>1. 5. 8</ versi on>
<scope>runti me</ scope>

</ dependency>

<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-api</artifactld>
<versi on>1. 5. 8</ versi on>
<scope>runti me</ scope>

</ dependency>

<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1o0g4j1l2</artifactld>
<versi on>1. 5. 8</ versi on>
<scope>runti me</ scope>

</ dependency>

<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j </artifactld>
<versi on>1. 2. 14</ ver si on>
<scope>runti me</ scope>

</ dependency>

</ dependenci es>

That might seem like a lot of dependencies just to get some logging. Well it is, but it is optional, and it
should behave better than the vanilla cormons- | oggi ng with respect to classloader issues, notably if
you are in a strict container like an OSGi platform. Allegedly there is also a performance benefit because
the bindings are at compile-time not runtime.

A more common choice amongst SLF4J users, which uses fewer steps and generates fewer dependencies,
isto bind directly to Logback. This removes the extra binding step because Logback implements SLF4J
directly, so you only need to depend on two libaries not four (j ¢l - over - sl f 4j and| ogback). If you
do that you might also need to exlude the df4j-api dependency from other external dependencies (not
Spring), because you only want one version of that API on the classpath.

Using Log4J

Many people use Log4j as alogging framework for configuration and management purposes. It's efficient
and well-established, and in fact it's what we use at runtime when we build and test Spring. Spring also
provides some utilities for configuring and initializing Log4j, so it has an optiona compile-time
dependency on Log4j in some modules.

To make Log4j work with the default JCL dependency (comrmons- | oggi ng) all you need to do is put
Log4j on the classpath, and provide it with a configuration file (| og4j . properti es or | og4j . xm
in the root of the classpath). So for Maven usersthisis your dependency declaration:

<dependenci es>
<dependency>

31 Reference Documentation 16


http://logback.qos.ch
http://logging.apache.org/log4j

Spring Framework

<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<versi on>3. 0. 0. RELEASE</ ver si on>
<scope>runti me</ scope>

</ dependency>

<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<versi on>1. 2. 14</ ver si on>
<scope>runti me</ scope>

</ dependency>

</ dependenci es>

And here's a sample log4j.properties for logging to the console:

| 0g4j . r oot Cat egor y=I NFO, st dout

| 0g4j . appender. st dout =or g. apache. | og4j . Consol eAppender
| og4j . appender . st dout . | ayout =or g. apache. | og4j . Pat t er nLayout
| 0g4j . appender. stdout . | ayout. Conver si onPat t er n=%I{ ABSOLUTE} %p % %{2}:% - %rmn

| 0g4j . cat egory. org. spri ngf ramewor k. beans. f act or y=DEBUG

Runtime Containers with Native JCL

Many people run their Spring applications in a container that itself provides an implementation of JCL.
IBM Websphere Application Server (WAS) is the archetype. This often causes problems, and
unfortunately there is no silver bullet solution; simply excluding conmons- | oggi ng from your
application is not enough in most situations.

To be clear about this. the problems reported are usually not with JCL per se, or even with
commons- | oggi ng: rather they are to do with binding commons- 1 oggi ng to another framework
(often Log4Jd). This can faill because commons-| oggi ng changed the way they do the runtime
discovery in between the older versions (1.0) found in some containers and the modern versions that most
people use now (1.1). Spring does not use any unusual parts of the JCL API, so nothing breaks there, but
as soon as Spring or your application tries to do any logging you can find that the bindings to Log4J are
not working.

In such cases with WAS the easiest thing to do isto invert the class loader hierarchy (IBM callsit "parent
last") so that the application controls the JCL dependency, not the container. That option isn't aways
open, but there are plenty of other suggestions in the public domain for alternative approaches, and your
mileage may vary depending on the exact version and feature set of the container.

3.1 Reference Documentation 17



Part II. What's New in Spring 3




Spring Framework

2. New Features and Enhancements in Spring 3.0

If you have been using the Spring Framework for some time, you will be aware that Spring has undergone
two magjor revisions: Spring 2.0, released in October 2006, and Spring 2.5, released in November 2007. It
isnow time for athird overhaul resulting in Spring 3.0.

Java SE and Java EE Support
The Spring Framework is now based on Java 5, and Java 6 is fully supported.

Furthermore, Spring is compatible with J2EE 1.4 and Java EE 5, while at the same time introducing
some early support for Java EE 6.

2.1Javab

The entire framework code has been revised to take advantage of Java 5 features like generics, varargs
and other language improvements. We have done our best to still keep the code backwards compatible.
We now have consistent use of generic Collections and Maps, consistent use of generic FactoryBeans,
and also consistent resolution of bridge methods in the Spring AOP API. Generic ApplicationListeners
automatically receive specific event types only. All callback interfaces such as TransactionCallback and
HibernateCallback declare a generic result value now. Overall, the Spring core codebase is now freshly
revised and optimized for Java 5.

Spring's TaskExecutor abstraction has been updated for close integration with Java 5's java.util.concurrent
facilities. We provide first-class support for Callables and Futures now, as well as ExecutorService
adapters, ThreadFactory integration, etc. This has been aligned with JSR-236 (Concurrency Utilities for
Java EE 6) as far as possible. Furthermore, we provide support for asynchronous method invocations
through the use of the new @Async annotation (or EJB 3.1's @Asynchronous annotation).

2.2 Improved documentation

The Spring reference documentation has also substantially been updated to reflect al of the changes and
new features for Spring 3.0. While every effort has been made to ensure that there are no errors in this
documentation, some errors may nevertheless have crept in. If you do spot any typos or even more serious
errors, and you can spare a few cycles during lunch, please do bring the error to the attention of the

Spring team by raising an issue.

2.3 New articles and tutorials

31 Reference Documentation 19


http://jira.springframework.org/

Spring Framework

There are many excellent articles and tutorials that show how to get started with Spring 3 features. Read
them at the Spring Documentation page.

The samples have been improved and updated to take advantage of the new features in Spring 3.
Additionally, the samples have been moved out of the source tree into a dedicated SVN repository
available at:

htt ps://anonsvn. spri ngfranewor k. org/ svn/ spri ng- sanpl es/

As such, the samples are no longer distributed alongside Spring 3 and need to be downloaded separately
from the repository mentioned above. However, this documentation will continue to refer to some
samples (in particular Petclinic) toillustrate various features.

Note

For more information on Subversion (or in short SVN), see the project homepage at:
htt p://subversi on. apache. or g/

2.4 New module organization and build system

The framework modules have been revised and are now managed separately with one source-tree per
modulejar:

* org.springframework.aop

* org.springframework.beans

* org.springframework.context

* org.springframewark.context.support
* org.springframework.expression
* org.springframework.instrument
* org.springframework.jdbc

* org.springframework.jms

* org.springframework.orm

* org.springframework.oxm

* org.springframework.test

* org.springframework.transaction

31 Reference Documentation 20


http://www.springsource.org/documentation
https://anonsvn.springframework.org/svn/spring-samples/

Spring Framework

* org.springframework.web
* org.springframework.web.portlet
* org.springframework.web.servlet

* org.springframework.web.struts

Note:

The spring.jar artifact that contained almost the entire framework is no longer provided.

We are now using a new Spring build system as known from Spring Web Flow 2.0. This gives us.
* |vy-based "Spring Build" system

 consistent deployment procedure

 consistent dependency management

» consistent generation of OSGi manifests

2.5 Overview of new features

This is a list of new features for Spring 3.0. We will cover these features in more detail later in this
section.

 Spring Expression Language

* |0C enhancements/Java based bean metadata

» General-purpose type conversion system and field formatting system

» Object to XML mapping functionality (OXM) moved from Spring Web Services project
» Comprehensive REST support

« @MVC additions

* Declarative model validation

 Early support for Java EE 6

» Embedded database support

3.1 Reference Documentation 21



Spring Framework

Core APIs updated for Java 5

BeanFactory interface returns typed bean instances as far as possible:

» T getBean(Class<T> requiredType)

» T getBean(String name, Class<T> requiredType)

* Map<String, T> getBeansOf Type(Class<T> type)

Spring's TaskExecutor interface now extendsj ava. uti | . concurrent. Execut or:
» extended AsyncTaskExecutor supports standard Callables with Futures

New Java 5 based converter APl and SPI:

» stateless ConversionService and Converters

 superseding standard JDK PropertyEditors

Typed ApplicationListener<eE>

Spring Expression Language

Spring introduces an expression language which is similar to Unified EL in its syntax but offers
significantly more features. The expression language can be used when defining XML and Annotation
based bean definitions and aso serves as the foundation for expression language support across the
Spring portfolio. Details of this new functionality can be found in the chapter Spring Expression
Language (SpEL).

The Spring Expression Language was created to provide the Spring community a single, well supported
expression language that can be used across all the products in the Spring portfolio. Its language features
are driven by the requirements of the projects in the Spring portfolio, including tooling requirements for
code completion support within the Eclipse based SpringSource Tool Suite.

The following is an example of how the Expression Language can be used to configure some properties
of a database setup

<bean cl ass="myconpany. Rewar dsTest Dat abase" >
<property nanme="dat abaseNane"
val ue="#{syst enProperties. dat abaseNane}"/ >
<property nanme="keyGenerator"
val ue="#{strat egyBean. dat abaseKeyGenerator}"/>
</ bean>

Thisfunctionality is also availableif you prefer to configure your components using annotations.

@reposi tory
public class RewardsTest Dat abase {

3.1 Reference Documentation 22


http://www.springsource.com/products/sts

Spring Framework

@/al ue("#{systenProperties. dat abaseNane}")
public voi d setDat abaseNane(String dbNane) { ...}

@/al ue("#{strat egyBean. dat abaseKeyGenerator}")
public void set KeyGener at or (KeyGenerator kg) { ...}

The Inversion of Control (loC) container

Java based bean metadata

Some core features from the JavaConfig project have been added to the Spring Framework now. This
means that the following annotations are now directly supported:

e @Configuration
* @Bean

* @DependsOn

* @Primary

.« @Lazy

e @Import

* @ImportResource
e @Vdue

Here is an example of a Java class providing basic configuration using the new JavaConfig features:

package org. exanpl e. confi g;

@conf i guration

public class AppConfig {
private @al ue("#{jdbcProperties.url}") String jdbcUrl;
private @/al ue("#{jdbcProperties.usernane}") String usernane;
private @al ue("#{jdbcProperties. password}") String password;

@Bean
publ i c FooService fooService() {

return new FooServi cel npl (f ooRepository());
}

@ean
publ i ¢ FooRepository fooRepository() {

return new Hi ber nat eFooReposi tory(sessi onFactory());
}

@ean
publ i c SessionFactory sessionFactory() {
/] wire up a session factory
Annot at i onSessi onFact or yBean asFact oryBean =
new Annot at i onSessi onFact or yBean() ;

31 Reference Documentation 23


http://www.springsource.org/javaconfig

Spring Framework

asFact or yBean. set Dat aSour ce(dat aSource());
/] additional config
return asFact oryBean. get Obj ect () ;

}

@ean
publ i c DataSource dataSource() {

return new Driver Manager Dat aSour ce(j dbcUrl, usernane, password);
}

}

To get this to work you need to add the following component scanning entry in your minimal application
context XML file.

<cont ext : conponent - scan base- package="or g. exanpl e. confi g"/>
<util:properties id="jdbcProperties" |ocation="classpath:org/exanple/config/jdbc.properties"/>

Or you can bootstrap a @Configuration class directly using
Annot at i onConf i gAppl i cati onCont ext:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onContext (AppConfig.class);
FooServi ce fooService = ctx. get Bean(FooServi ce. cl ass);
fooService. doStuff();

}

See the section called * Instantiating the Spring container using AnnotationConfigApplicationContext” for
full information on Annot at i onConf i gAppl i cat i onCont ext .

Defining bean metadata within components

@ean annotated methods are also supported inside Spring components. They contribute a factory bean
definition to the container. See Defining bean metadata within components for more information

General purpose type conversion system and field formatting system

A general purpose type conversion system has been introduced. The system is currently used by SpEL for
type conversion, and may also be used by a Spring Container and DataBinder when binding bean property
values.

In addition, a formatter SPI has been introduced for formatting field values. This SPI provides a simpler
and more robust alternative to JavaBean PropertyEditors for use in client environments such as Spring
MVC.

The Data Tier

Object to XML mapping functionality (OXM) from the Spring Web Services project has been moved to
the core Spring Framework now. The functionality is found in the or g. spri ngf ranmewor k. oxm
package. More information on the use of the OXM module can be found in the Marshalling XML using

O/X Mappers chapter.

3.1 Reference Documentation 24



Spring Framework

The Web Tier

The most exciting new feature for the Web Tier is the support for building RESTful web services and
web applications. There are also some new annotations that can be used in any web application.

Comprehensive REST support

Server-side support for building RESTful applications has been provided as an extension of the existing
annotation driven MV C web framework. Client-side support is provided by the Rest Tenpl at e classin
the spirit of other template classes such as JdbcTenpl at e and Jns Tenpl at e. Both server and client
side REST functionality make use of Ht t pConver t er sto facilitate the conversion between objects and
their representation in HT TP requests and responses.

The Marshal | i ngHt t pMessageConverter uses the Object to XML mapping functionality
mentioned earlier.

Refer to the sections on MV C and the RestTemplate for more information.

@MVC additions
A mvc namespace has been introduced that greatly simplifies Spring MV C configuration.

Additional annotations such as @Cooki eVal ue and @Request Header s have been added. See
Mapping cookie values with the @CookieValue annotation and Mapping request header attributes with
the @ReguestHeader annotation for more information.

Declarative model validation

Severa validation enhancements, including JSR 303 support that uses Hibernate Validator as the default
provider.

Early support for Java EE 6

We provide support for asynchronous method invocations through the use of the new @A sync annotation
(or EJB 3.1's @A synchronous annotation).

JSR 303, JSF 2.0, JPA 2.0, etc

Support for embedded databases

Convenient support for embedded Java database engines, including HSQL, H2, and Derby, is now
provided.

31 Reference Documentation 25



Spring Framework

3. New Features and Enhancements in Spring 3.1

Building on the support introduced in Spring 3.0, Spring 3.1 is currently under development, and at the
time of thiswriting Spring 3.1 RC1 is being prepared for release.
3.1 Overview of new features

This is a list of new features for Spring 3.1. Most features do not yet have dedicated reference
documentation but do have Javadoc. In such cases, fully-qualified class names are given.

Cache Abstraction

» Chapter 28, Cache Abstraction

» Cache Abstraction (SpringSource team blog)

Bean Definition Profiles

o XML profiles (SpringSource Team Blog)

* Introducing @Profile (SpringSource Team Blog)

 See org.springframework.context.annotation.Configuration Javadoc

* See org.springframework.context.annotation.Profile Javadoc

Environment Abstraction

» Environment Abstraction (SpringSource Team Blog)

» See org.springframework.core.env.Environment Javadoc

PropertySource Abstraction

 Unified Property Management (SpringSource Team Blog)

 See org.springframework.core.env.Environment Javadoc
» See org.springframework.core.env.PropertySource Javadoc

 See org.springframework.context.annotation.Property Source Javadoc

31 Reference Documentation 26


http://blog.springsource.com/2011/02/23/spring-3-1-m1-caching/
http://blog.springsource.com/2011/02/11/spring-framework-3-1-m1-released/
http://blog.springsource.com/2011/02/14/spring-3-1-m1-introducing-profile/
http://blog.springsource.com/2011/02/11/spring-framework-3-1-m1-released/
http://blog.springsource.com/2011/02/15/spring-3-1-m1-unified-property-management/

Spring Framework

Code equivalents for Spring's XML namespaces

Code-based equivalents to popular Spring XML namespace elements <context:component-scan/>,
<tx:annotation-driven/> and <mvc:annotation-driven> have been developed, most in the form of
@nabl e annotations. These are designed for use in conjunction with Spring's @onf i gur ati on
classes, which were introduced in Spring 3.0.

» See org.springframework.context.annotation.Configuration Javadoc

 See org.springframework.context.annotation.ComponentScan Javadoc

* See org.springframework.transaction.annotation.Enabl eTransactionM anagement Javadoc
* See org.springframework.cache.annotati on.EnableCaching Javadoc

» See org.springframework.web.servlet.config.annotation.EnableWebMvc Javadoc

* See org.springframework.scheduling.annotati on.EnableScheduling Javadoc

* See org.springframework.scheduling.annotation.EnableAsync Javadoc

 See org.springframework.context.annotati on.Enabl eA spectJA utoProxy Javadoc

* See org.springframework.context.annotati on.Enabl el oad TimeWeaving Javadoc

» See org.springframework.beans.factory.aspectj.EnableSpringConfigured Javadoc

Support for Hibernate 4.x

» See Javadoc for classes within the new org.springframework.orm.hibernate4 package

TestContext framework support for @Configuration classes and bean
definition profiles

The @ont ext Confi gur ati on annotation now supports supplying @onf i gur at i on classes for
configuring the Spring Test Cont ext . In addition, a new @A\ct i vePr of i | es annotation has been
introduced to support declarative configuration of active bean definition profiles in
Appl i cati onCont ext integration tests.

» Spring 3.1 M2: Testing with @Configuration Classes and Profiles (SpringSource Team Blog)

» Seethe section called “ Spring TestContext Framework”

e See the section called “Context configuration with @Configuration classes’ and
org. springframewor k. t est. cont ext. Cont ext Confi gurati on Javadoc

3.1 Reference Documentation 27


http://blog.springsource.com/2011/06/21/spring-3-1-m2-testing-with-configuration-classes-and-profiles/

Spring Framework

e Seeorg. springframework.test.context. ActiveProfil es Javadoc
* Seeorg. springframework.test.context. Smart Cont ext Loader Javadoc
* See
org. springframewor k. t est. cont ext. support. Del egati ngSmart Cont ext Loader

Javadoc

* See
org. springframework. test.context. support. Annot ati onConfi gCont ext Loader
Javadoc

c: namespace for more concise constructor injection

* thesection called “XML shortcut with the c-namespace”

Support for injection against non-standard JavaBeans setters

Prior to Spring 3.1, in order to inject against a property method it had to conform strictly to JavaBeans
property signature rules, namely that any 'setter’ method must be void-returning. It is now possible in
Spring XML to specify setter methods that return any object type. This is useful when considering
designing APIs for method-chaining, where setter methods return areferenceto 'this.

Support for Servlet 3 code-based configuration of Servlet Container

The new WebApplicationlnitializer builds atop Servlet 3.0s
Servl et Containerlnitializer supportto provide a programmatic alternative to the traditional
web.xml.

 See org.springframework.web.WebA pplicationlnitializer Javadoc

» Diff from Spring's Greenhouse reference application demonstrating migration from web.xml to
WebApplicationlnitializer

Support for Servlet 3 MultipartResolver

 See org.springframework.web.multipart.support. StandardServletM ulti partResol ver Javadoc

JPA EntityManagerFactory bootstrapping without persistence.xml

In standard JPA, persistence units get defined through META- | NF/ per si st ence. xml files in
specific jar files which will in turn get searched for @nt ity classes. In many cases, persistence.xml

31 Reference Documentation 28


http://bit.ly/lrDHja

Spring Framework

does not contain more than a unit name and relies on defaults and/or external setup for all other concerns
(such as the DataSource to use, etc). For that reason, Spring 3.1 provides an alternative:
Local Cont ai ner Enti t yManager Fact or yBean accepts a 'packagesToScan' property, specifying
base  packages to scan for @ntity classes. This is analogous to
Annot at i onSessi onFact or yBean's property of the same name for native Hibernate setup, and
also to Spring's component-scan feature for regular Spring beans. Effectively, this alows for XML-free
JPA setup at the mere expense of specifying a base package for entity scanning: a particularly fine match
for Spring applications which rely on component scanning for Spring beans as well, possibly even
bootstrapped using a code-based Servlet 3.0 initializer.

New HandlerMethod-based Support Classes For Annotated Controller
Processing

Spring 3.1 introduces a new set of support classes for processing requests with annotated controllers:
* Request Mappi ngHandl er Mappi ng

* Request Mappi ngHandl er Adapt er

» Excepti onHandl er Except i onResol ver

These classes are areplacement for the existing:

* Def aul t Annot at i onHandl er Mappi ng

e Annot at i onMet hodHandl er Adapt er

e Annot at i onMet hodHandl er Excepti onResol ver

The new classes were developed in response to many requests to make annotation controller support
classes more customizable and open for extension. Whereas previously you could configure a custom
annotated controller method argument resolver, with the new support classes you can customize the
processing for any supported method argument or return value type.

 See org.springframework.web.method.support.HandlerM ethodArgumentResol ver Javadoc
» See org.springframework.web.method.support.HandlerM ethodReturnV alueHandler Javadoc

A second notable difference is the introduction of a Handl er Met hod abstraction to represent an
@ReguestMapping method. This abstraction is used throughout by the new support classes as the
handl er instance. For example a Handl er | nt er cept or can cast the handl er from Qbj ect to
Handl er Met hod and get accessto the target controller method, its annotations, etc.

The new classes are enabled by default by the MV C namespace and by Javabased configuration via
@EnableWebMvc. The existing classes will continue to be available but use of the new classes is
recommended going forward.

31 Reference Documentation 29



Spring Framework

See the section called “New Support Classes for @RequestMapping methods in Spring MVC 3.1" for
additional details and alist of features not available with the new support classes.

"consumes" and "produces” conditions in @RequestMapping

Improved support for specifying media types consumed by a method through the ' Cont ent - Type'
header as well as for producible types specified through the ' Accept ' header. See the section called
“Consumable Media Types’ and the section called “Producible Media Types’

Flash Attributes and Redi rect Attri but es

Flash attributes can now be stored in a Fl ashMap and saved in the HTTP session to survive a redirect.
For an overview of the general support for flash attributes in Spring MV C see Section 16.6, “Using flash
attributes”.

In annotated controllers, an @Request Mappi ng method can add flash attributes by declaring a method
argument of type Redi rect Att ri but es. This method argument can now also be used to get precise
control over the attributes used in aredirect scenario. See the section called “ Specifying redirect and flash
attributes’ for more details.

URI Template Variable Enhancements
URI template variables from the current request are used in more places:

* URI template variables are used in addition to request parameters when binding a request to
@/mbdel At t ri but e method arguments.

» @PathVariable method argument values are merged into the model before rendering, except in views
that generate content in an automated fashion such as JSON serialization or XML marshalling.

e A redirect string can contain placeholders for URI variables (ed.
"redirect:/blog/{year}/{nonth}"). When expanding the placeholders, URI template
variables from the current request are automatically considered.

« An @vbdel Attri but e method argument can be instantiated from a URI template variable provided
there isaregistered Converter or PropertyEditor to convert from a String to the target object type.

@/al i d On @RequestBody Controller Method Arguments

An @RequestBody method argument can be annotated with @Valid to invoke automatic validation
similar  to the support for @ModelAttribute method arguments. A resulting
Met hodAr gurrent Not Val i dExcepti on is handled in the
Def aul t Handl er Except i onResol ver and resultsin a400 response code.

31 Reference Documentation 30



Spring Framework

@Request Part Annotation On Controller Method Arguments

This new annotation provides access to the content of a"multipart/form-data’ request part. See the section
called “Handling afile upload request from programmatic clients” and Section 16.10, “ Spring's multipart
(file upload) support”.

Ur i Conponent sBui | der and Uri Conponent s

A new Uri Conponent s class has been added, which is an immutable container of URI components
providing access to all contained URI components. A nenw Uri Conponent sBui | der class is aso
provided to help create Ur i Conponent s instances. Together the two classes give fine-grained control
over al aspects of preparing a URI including construction, expansion from URI template variables, and
encoding.

In most cases the new classes can be used as a more flexible alternative to the existing Ur i Tenpl at e
especialy sinceUri Tenpl at e relies on those same classes internally.

A Servl et Uri Conrponent sBui | der sub-class provides static factory methods to copy information
from a Servlet request. See Section 16.7, “Building URIS’.

31 Reference Documentation 31



Part Ill. Core Technologies

This part of the reference documentation covers all of those technologies that are absolutely integral to
the Spring Framework.

Foremost amongst these is the Spring Framework's Inversion of Control (IoC) container. A thorough
treatment of the Spring Framework's 10C container is closely followed by comprehensive coverage of
Spring's Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP
framework, which is conceptually easy to understand, and which successfully addresses the 80% sweet
spot of AOP requirements in Java enterprise programming.

Coverage of Spring's integration with AspectJ (currently the richest - in terms of features - and certainly
most mature AOP implementation in the Java enterprise space) is also provided.

Finally, the adoption of the test-driven-development (TDD) approach to software development is
certainly advocated by the Spring team, and so coverage of Spring's support for integration testing is
covered (alongside best practices for unit testing). The Spring team has found that the correct use of 10C
certainly does make both unit and integration testing easier (in that the presence of setter methods and
appropriate constructors on classes makes them easier to wire together in a test without having to set up
service locator registries and suchlike)... the chapter dedicated solely to testing will hopefully convince
you of thisaswell.

» Chapter 4, The 10C container

» Chapter 5, Resources

» Chapter 6, Validation, Data Binding, and Type Conversion
» Chapter 7, Soring Expression Language (SoEL)

» Chapter 8, Aspect Oriented Programming with Spring

» Chapter 9, Soring AOP APIs

» Chapter 10, Testing




Spring Framework

4. The loC container

4.1 Introduction to the Spring loC container and beans

This chapter covers the Spring Framework implementation of the Inversion of Control (10C) lprinci ple.
loC is also known as dependency injection (DI). It is a process whereby objects define their dependencies,
that is, the other objects they work with, only through constructor arguments, arguments to a factory
method, or properties that are set on the object instance after it is constructed or returned from a factory
method. The container then injects those dependencies when it creates the bean. This process is
fundamentally the inverse, hence the name Inversion of Control (10C), of the bean itself controlling the
instantiation or location of its dependencies by using direct construction of classes, or a mechanism such
asthe Service Locator pattern.

The or g. spri ngf ramewor k. beans and or g. spri ngf ranewor k. cont ext packages are the
basis for Spring Framework's 10C container. The BeanFact ory interface provides an advanced
configuration mechanism capable of managing any type of object. Appli cati onContext is a
sub-interface of BeanFactory. It adds easier integration with Spring's AOP features, message
resource handling (for use in internationalization), event publication; and application-layer specific
contexts such asthe WebAppl i cat i onCont ext for usein web applications.

In short, the BeanFact ory provides the configuration framework and basic functionality, and the
Appl i cat i onCont ext adds more enterprise-specific functionality. The Appl i cati onCont ext is
a complete superset of the BeanFact ory, and is used exclusively in this chapter in descriptions of
Spring's 10C container. For more information on using the BeanFactory instead of the
Appl i cati onCont ext, refer to Section 4.15, “ The BeanFactory”.

In Spring, the objects that form the backbone of your application and that are managed by the Spring 10C
container are called beans. A bean is an object that is instantiated, assembled, and otherwise managed by
a Spring 1oC container. Otherwise, a bean is simply one of many abjects in your application. Beans, and
the dependencies among them, are reflected in the configuration metadata used by a container.

4.2 Container overview

The interface or g. spri ngf ramewor k. cont ext . Appl i cati onCont ext represents the Spring
IoC container and is responsible for instantiating, configuring, and assembling the aforementioned beans.
The container gets its instructions on what objects to instantiate, configure, and assemble by reading
configuration metadata. The configuration metadata is represented in XML, Java annotations, or Java
code. It allows you to express the objects that compose your application and the rich interdependencies

1see Background

31 Reference Documentation 33


http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/BeanFactory.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html

Spring Framework

between such aobjects.

Several implementations of the Appl i cati onCont ext interface are supplied out-of-the-box with
Spring. In  standalone  applications it is common to create an instance of
Gl assPat hXm ApplicationContext or Fil eSystenXn Applicati onContext. While
XML has been the traditional format for defining configuration metadata you can instruct the container to
use Java annotations or code as the metadata format by providng a small amount of XML configuration to
declaratively enable support for these additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or more instances of a
Spring 10C container. For example, in a web application scenario, a simple eight (or so) lines of
boilerplate J2EE web descriptor XML in the web. xm file of the application will typically suffice (see
the section called “Convenient ApplicationContext instantiation for web applications’). If you are using
the SpringSource Tool Suite Eclipse-powered development environment or Spring Roo this boilerplate
configuration can be easily created with few mouse clicks or keystrokes.

The following diagram is a high-level view of how Spring works. Y our application classes are combined
with configuration metadata so that after the Appl i cat i onCont ext is created and initialized, you
have afully configured and executable system or application.

Your Business Objects (POJOs)

> The Spari
Configuration ,:E ﬂtap”:lg E
Metadata
roduces

Fully configured system

Ready for Use

The Spring |oC container

Configuration metadata

As the preceding diagram shows, the Spring 10C container consumes a form of configuration metadata;

31 Reference Documentation 34


http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/support/ClassPathXmlApplicationContext.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/support/FileSystemXmlApplicationContext.html
http://www.springsource.com/produts/sts
http://www.springsource.org/roo

Spring Framework

this configuration metadata represents how you as an application developer tell the Spring container to
instantiate, configure, and assembl e the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format, which is what
most of this chapter uses to convey key concepts and features of the Spring 10C container.

Note

XML -based metadata is not the only allowed form of configuration metadata. The Spring 10C
container itself is totally decoupled from the format in which this configuration metadata is
actually written.

For information about using other forms of metadata with the Spring container, see:

» Annotation-based configuration: Spring 2.5 introduced support for annotation-based configuration
metadata.

» Java-based configuration: Starting with Spring 3.0, many features provided by the Spring JavaConfig
project became part of the core Spring Framework. Thus you can define beans external to your
application classes by using Java rather than XML files. To use these new features, see the
@configuration, @ean, @ nport and @ependsOn annotations.

Spring configuration consists of at |east one and typically more than one bean definition that the container
must manage. XML-based configuration metadata shows these beans configured as <bean/ > elements
inside atop-level <beans/ > element.

These bean definitions correspond to the actual objects that make up your application. Typicaly you
define service layer objects, data access objects (DAQs), presentation objects such as Struts Acti on
instances, infrastructure objects such as Hibernate Sessi onFact ori es, JMS Queues, and so forth.
Typicaly one does not configure fine-grained domain objects in the container, because it is usually the
responsibility of DAOs and business logic to create and load domain objects. However, you can use
Spring's integration with AspectJ to configure objects that have been created outside the control of an [oC
container. See Using AspectJ to dependency-inject domain objects with Spring.

The following example shows the basic structure of XML-based configuration metadata:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://wwm. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd" >

<bean id="..." class="...">

<I-- col | aborators and configuration for this bean go here -->
</ bean>
<bean id="..." class="...">

<I-- col | aborators and configuration for this bean go here -->
</ bean>
<!-- nore bean definitions go here -->

31 Reference Documentation 35


http://www.springsource.org/javaconfig
http://www.springsource.org/javaconfig

Spring Framework

</ beans>

Thei d attribute is a string that you use to identify the individual bean definition. The cl ass attribute
defines the type of the bean and uses the fully qualified classname. The value of the id attribute refers to
collaborating objects. The XML for referring to collaborating objects is not shown in this example; see
Dependencies for more information.

Instantiating a container

Instantiating a Spring 10C container is straightforward. The location path or paths supplied to an
Appl i cat i onCont ext constructor are actually resource strings that alow the container to load
configuration metadata from a variety of externa resources such as the local file system, from the Java
CLASSPATH, and so on.

Appl i cati onCont ext context =
new Cl assPat hXm Appl i cati onContext (new String[] {"services.xm", "daos.xm"});

Note

After you learn about Spring's 10C container, you may want to know more about Spring's
Resour ce abstraction, as described in Chapter 5, Resources, which provides a convenient
mechanism for reading an InputSream from locations defined in a URI syntax. In particular,
Resour ce paths are used to construct applications contexts as described in Section 5.7,
“ Application contexts and Resource paths’.

The following example shows the service layer objects (ser vi ces. xm ) configuration file:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://wwm. springframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd" >

<l-- services -->

<bean i d="pet St ore"
cl ass="org. spri ngfranmewor k. sanpl es. j pet store. servi ces. Pet St or eSer vi cel npl ">
<property name="account Dao" ref="account Dao"/>
<property name="itenDao" ref="itenDao"/>

<l-- additional collaborators and configuration for this bean go here -->
</ bean>
<l-- nore bean definitions for services go here -->
</ beans>

The following example shows the data access objects daos. xmi file:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. spri ngframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd" >

31 Reference Documentation 36



Spring Framework

<bean i d="account Dao"
cl ass="org. spri ngframewor k. sanpl es. j pet store. dao. i bati s. Sql MapAccount Dao" >
<l-- additional collaborators and configuration for this bean go here -->
</ bean>

<bean id="itenDao" class="org.springframework. sanpl es. | petstore.dao.ibatis.Sql MapltenDao">

<l-- additional collaborators and configuration for this bean go here -->
</ bean>
<l-- nore bean definitions for data access objects go here -->
</ beans>

In the preceding example, the service layer consists of the class Pet St or eSer vi cel npl , and two
data access objects of the type Sgl MapAccount Dao and SglMapltemDao are based on the iBatis
Object/Relational mapping framework. The property nane element refers to the name of the
JavaBean property, and the r ef element refers to the name of another bean definition. This linkage
between id and ref elements expresses the dependency between collaborating objects. For details of
configuring an object's dependencies, see Dependencies.

Composing XML-based configuration metadata

It can be useful to have bean definitions span multiple XML files. Often each individua XML
configuration file represents alogical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these XML fragments.
This constructor takes multiple Resour ce locations, as was shown in the previous section.
Alternatively, use one or more occurrences of the <i nport/ > element to load bean definitions from
another file or files. For example:

<beans>
<inport resource="services.xm"/>

<i nport resource="resources/ messageSource. xm "/ >
<i nport resource="/resources/themeSource. xm "/ >

<bean id="beanl" class="..."/>
<bean id="bean2" class="..."/>
</ beans>

In the preceding example, external bean definitions are loaded from three files, servi ces. xni ,
messageSour ce. xm , and t hemeSour ce. xni . All location paths are relative to the definition file
doing the importing, so ser vi ces. xm must be in the same directory or classpath location as the file
doing the importing, while messageSource. xm and themeSource.xm must be in a
r esour ces location below the location of the importing file. As you can see, aleading slash isignored,
but given that these paths are relative, it is better form not to use the slash at all. The contents of the files
being imported, including the top level <beans/ > element, must be valid XML bean definitions
according to the Spring Schema or DTD.

Note

31 Reference Documentation 37


http://ibatis.apache.org/

Spring Framework

It is possible, but not recommended, to reference files in parent directories using a relative
"..[" path. Doing so creates a dependency on a file that is outside the current application. In
particular, this reference is not recommended for "classpath:" URLs (for example,
"classpath:../servicesxml™), where the runtime resolution process chooses the "nearest”
classpath root and then looks into its parent directory. Classpath configuration changes may
lead to the choice of a different, incorrect directory.

You can aways use fully qualified resource locations instead of relative paths: for example,
"file:C:/config/services.xml" or "classpath:/config/services.xml". However, be aware that you
are coupling your application's configuration to specific absolute locations. It is generaly
preferable to keep an indirection for such absolute locations, for example, through "${...}"
placehol ders that are resolved against VM system properties at runtime.

Using the container

The Appl i cati onCont ext isthe interface for an advanced factory capable of maintaining a registry
of different beans and their dependencies. Using the method T getBean(String nane,
O ass<T> requi redType) you can retrieve instances of your beans.

The Appl i cati onCont ext enablesyou to read bean definitions and access them as follows:

/'l create and configure beans
Appl i cati onCont ext context =
new Cl assPat hXm Appl i cati onCont ext (new String[] {"services.xm", "daos.xm"});

/'l retrieve configured instance
Pet St or eSer vi cel npl service = context.getBean("petStore", PetStoreServicelnpl.class);

/'l use configured instance
Li st userlList service. getUsernanelList();

You use get Bean() to retrieve instances of your beans. The Appl i cat i onCont ext interface has a
few other methods for retrieving beans, but ideally your application code should never use them. Indeed,
your application code should have no calls to the get Bean() method at all, and thus no dependency on
Spring APIs at all. For example, Spring's integration with web frameworks provides for dependency
injection for various web framework classes such as controllers and JSF-managed beans.

4.3 Bean overview

A Spring 1oC container manages one or more beans. These beans are created with the configuration
metadata that you supply to the container, for example, in the form of XML <bean/ > definitions.

Within the container itself, these bean definitions are represented as BeanDef i ni ti on objects, which
contain (among other information) the following metadata:

31 Reference Documentation 38



Spring Framework

» A package-qualified class name: typically the actual implementation class of the bean being defined.

» Bean behavioral configuration elements, which state how the bean should behave in the container
(scope, lifecycle callbacks, and so forth).

» References to other beans that are needed for the bean to do its work; these references are also called
collaborators or dependencies.

» Other configuration settings to set in the newly created object, for example, the number of connections
to use in a bean that manages a connection pooal, or the size limit of the pool.

This metadata translates to a set of properties that make up each bean definition.

Table 4.1. The bean definition

Property Explained in...

class
the section called “Instantiating beans’

name
the section called “Naming beans’

scope
Section 4.5, “Bean scopes’

constructor arguments
the section called “Dependency injection”

properties
the section called “Dependency injection”

autowiring mode
the section called “ Autowiring collaborators’

lazy-initialization mode
the section called “Lazy-initialized beans’

initialization method
the section called “Initialization callbacks’

destruction method
the section called “ Destruction callbacks”

In addition to bean definitions that contain information on how to create a specific bean, the
Appl i cati onCont ext implementations also permit the registration of existing objects that are
created outside the container, by users. This is done by accessing the ApplicationContext's BeanFactory
via the method getBeanFactory() which returns the BeanFactory implementation
Def aul t Li st abl eBeanFact ory. Def aul t Li st abl eBeanFact ory supports this registration
through the methods registerSingleton(..) and registerBeanDefinition(..).
However, typical applications work solely with beans defined through metadata bean definitions.

31 Reference Documentation 39



Spring Framework

Naming beans

Every bean has one or more identifiers. These identifiers must be unigue within the container that hosts
the bean. A bean usually has only one identifier, but if it requires more than one, the extra ones can be
considered aliases.

In XML-based configuration metadata, you use the i d and/or nane attributes to specify the bean
identifier(s). The i d attribute alows you to specify exactly one id. Conventionally these names are
alphanumeric (‘myBean’, 'fooService, etc), but may special characters as well. If you want to introduce
other aliases to the bean, you can aso specify them in the nane attribute, separated by a comma (, ),
semicolon (; ), or white space. As a historical note, in versions prior to Spring 3.1, the i d attribute was
typed as an xsd: | D, which constrained possible characters. As of 3.1, it is now xsd: stri ng. Note
that bean id uniguenessis still enforced by the container, though no longer by XML parsers.

You are not required to supply a name or id for a bean. If no name or id is supplied explicitly, the
container generates a unique name for that bean. However, if you want to refer to that bean by name,
through the use of the ref element or Service Locator style lookup, you must provide a name.
Motivations for not supplying a name are related to using inner beans and autowiring collaborators.

Bean naming conventions

The convention is to use the standard Java convention for instance field names when naming beans.
That is, bean names start with a lowercase letter, and are camel-cased from then on. Examples of
such names would be (without quotes) 'account Manager', 'account Service',
'userDao',' | ogi nControll er',andsoforth.

Naming beans consistently makes your configuration easier to read and understand, and if you are
using Spring AOP it helps alot when applying advice to a set of beans related by name.

Aliasing a bean outside the bean definition

In a bean definition itself, you can supply more than one name for the bean, by using a combination of up
to one name specified by the i d attribute, and any number of other names in the namne attribute. These
names can be equivalent aliases to the same bean, and are useful for some situations, such as allowing
each component in an application to refer to a common dependency by using a bean name that is specific
to that component itsalf.

Specifying al aliases where the bean is actually defined is not always adequate, however. It is sometimes
desirable to introduce an alias for a bean that is defined elsewhere. This is commonly the case in large
systems where configuration is split amongst each subsystem, each subsystem having its own set of
object definitions. In XML-based configuration metadata, you can use the <al i as/ > element to
accomplish this.

<al i as nanme="fronNane" alias="toNane"/>

31 Reference Documentation 40



Spring Framework

In this case, a bean in the same container which is named f r onNane, may also after the use of this alias
definition, be referred to ast oNane.

For example, the configuration metadata for subsystem A may refer to a DataSource via the name
'subsystemA-dataSource. The configuration metadata for subsystem B may refer to a DataSource via the
name 'subsystemB-dataSource'. When composing the main application that uses both these subsystems
the main application refers to the DataSource via the name 'myA pp-dataSource'. To have all three names
refer to the same object you add to the MyA pp configuration metadata the following aliases definitions:

<al i as nane="subsyst emA- dat aSour ce" al i as="subsyst enB- dat aSour ce"/>
<al i as nane="subsyst emA- dat aSour ce" al i as="nyApp- dat aSource" />

Now each component and the main application can refer to the dataSource through a name that is unique
and guaranteed not to clash with any other definition (effectively creating a namespace), yet they refer to
the same bean.

Instantiating beans

A bean definition essentialy is arecipe for creating one or more objects. The container looks at the recipe
for anamed bean when asked, and uses the configuration metadata encapsulated by that bean definition to
create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object that is to be
instantiated in the cl ass attribute of the <bean/ > element. Thiscl ass attribute, which internaly isa
Ol ass property on a BeanDefi niti on instance, is usually mandatory. (For exceptions, see the
section caled “Instantiation using an instance factory method” and Section 4.7, “Bean definition
inheritance”.) You usethe Cl ass property in one of two ways:

» Typicaly, to specify the bean class to be constructed in the case where the container itself directly
creates the bean by calling its constructor reflectively, somewhat equivalent to Java code using the new
operator.

» To specify the actua class containing the st at i ¢ factory method that will be invoked to create the
object, in the less common case where the container invokes a st at i ¢, factory method on a class to
create the bean. The object type returned from the invocation of the st at i ¢ factory method may be
the same class or another class entirely.

Inner class names

If you want to configure a bean definition for a st at i ¢ nested class, you have to use the binary
name of the inner class.

For example, if you have a class called Foo in the com exanpl e package, and this Foo class has
astati c inner class called Bar , the value of the' cl ass' attribute on a bean definition would
be...

3.1 Reference Documentation 41



Spring Framework

com exanpl e. Foo$Bar

Notice the use of the $ character in the name to separate the inner class name from the outer class
name.

Instantiation with a constructor

When you create a bean by the constructor approach, all normal classes are usable by and compatible with
Spring. That is, the class being developed does not need to implement any specific interfaces or to be
coded in a specific fashion. Simply specifying the bean class should suffice. However, depending on what
type of 10C you use for that specific bean, you may need a default (empty) constructor.

The Spring 10C container can manage virtually any class you want it to manage; it is not limited to
managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-argument)
constructor and appropriate setters and getters modeled after the properties in the container. You can also
have more exotic non-bean-style classes in your container. If, for example, you need to use a legacy
connection pool that absolutely does not adhere to the JavaBean specification, Spring can manage it as
well.

With XM L-based configuration metadata you can specify your bean class as follows:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"/ >

<bean nane="anot her Exanpl e" cl ass="exanpl es. Exanpl eBeanTwo" / >

For details about the mechanism for supplying arguments to the constructor (if required) and setting
object instance properties after the object is constructed, see Injecting Dependencies.

Instantiation with a static factory method

When defining a bean that you create with a static factory method, you use the cl ass attribute to specify
the class containing the st at i ¢ factory method and an attribute named f act or y- net hod to specify
the name of the factory method itself. Y ou should be able to call this method (with optional arguments as
described later) and return a live object, which subsequently is treated as if it had been created through a
constructor. One use for such abean definitionisto call st at i ¢ factoriesin legacy code.

The following bean definition specifies that the bean will be created by calling a factory-method. The
definition does not specify the type (class) of the returned object, only the class containing the factory
method. In this example, thecr eat el nst ance() method must be a static method.

<bean id="client Service"
cl ass="exanpl es. d i ent Servi ce"
factory-nmet hod="creat el nst ance"/ >

public class ClientService {
private static CientService clientService = new dientService();
private CientService() {}

3.1 Reference Documentation 42



Spring Framework

public static OientService createlnstance() {
return clientService
}

}

For details about the mechanism for supplying (optional) arguments to the factory method and setting
object instance properties after the object is returned from the factory, see Dependencies and

configuration in detail.

Instantiation using an instance factory method

Similar to instantiation through a static factory method, instantiation with an instance factory method
invokes a non-static method of an existing bean from the container to create a new bean. To use this
mechanism, leavethecl ass attribute empty, and inthef act or y- bean attribute, specify the name of
abean in the current (or parent/ancestor) container that contains the instance method that is to be invoked

to create the object. Set the name of the factory method itself with thef act or y- net hod attribute.

<l-- the factory bean, which contains a nethod called createlnstance()
<bean id="serviceLocator" cl ass="exanpl es. Def aul t Servi ceLocat or" >

<l-- inject any dependencies required by this |ocator bean -->
</ bean>

<l-- the bean to be created via the factory bean -->
<bean id="client Service"
factory-bean="servi ceLocator"
factory-nethod="creat eC i ent Servi cel nstance"/>

public class DefaultServiceLocator {
private static CientService clientService = new CientServicel npl();
private DefaultServiceLocator() {}

public CientService createCientServicel nstance() ({
return clientService
}
}

One factory class can also hold more than one factory method as shown here:

<bean id="serviceLocator" cl ass="exanpl es. Def aul t Servi ceLocat or" >
<!-- inject any dependencies required by this |ocator bean -->
</ bean>
<bean id="client Service"
factory-bean="servi ceLocator"
factory-nethod="creat eC i ent Servi cel nstance"/>

<bean i d="account Servi ce"

factory-bean="servi ceLocat or"
factory-nmet hod="cr eat eAccount Servi cel nst ance"/ >

public class DefaultServiceLocator {

private static CientService clientService = new CientServicel npl();
private static Account Service account Servi ce = new Account Servi cel npl () ;

private DefaultServiceLocator() {}

public CientService createCientServicelnstance() {

31 Reference Documentation

43



Spring Framework

return clientService;

}

publ i ¢ Account Servi ce createAccount Servi cel nstance() {
return account Servi ce;

}
}

This approach shows that the factory bean itself can be managed and configured through dependency
injection (DI). See Dependencies and configuration in detail.

Note

In Spring documentation, factory bean refers to a bean that is configured in the Spring
container that will create objects through an instance or static factory method. By contrast,
Fact or yBean (notice the capitalization) refersto a Spring-specific Fact or yBean .

4.4 Dependencies

A typical enterprise application does not consist of a single object (or bean in the Spring parlance). Even
the simplest application has a few objects that work together to present what the end-user sees as a
coherent application. This next section explains how you go from defining a number of bean definitions
that stand aloneto afully realized application where objects collaborate to achieve agoal.

Dependency injection

Dependency injection (DI) is a process whereby objects define their dependencies, that is, the other
objects they work with, only through constructor arguments, arguments to a factory method, or properties
that are set on the object instance after it is constructed or returned from a factory method. The container
then injects those dependencies when it creates the bean. This process is fundamentally the inverse, hence
the name Inversion of Control (1oC), of the bean itself controlling the instantiation or location of its
dependencies on its own by using direct construction of classes, or the Service Locator pattern.

Code is cleaner with the DI principle and decoupling is more effective when objects are provided with
their dependencies. The object does not look up its dependencies, and does not know the location or class
of the dependencies. As such, your classes become easier to test, in particular when the dependencies are
on interfaces or abstract base classes, which alow for stub or mock implementations to be used in unit
tests.

DI exists in two major variants, Constructor-based dependency injection and Setter-based dependency
injection.

Constructor-based dependency injection

Constructor-based DI is accomplished by the container invoking a constructor with a number of

31 Reference Documentation 44



Spring Framework

arguments, each representing a dependency. Calling a st at i ¢ factory method with specific arguments
to construct the bean is nearly equivalent, and this discussion treats arguments to a constructor and to a
static factory method similarly. The following example shows a class that can only be
dependency-injected with constructor injection. Notice that there is nothing special about this class, itisa
POJO that has no dependencies on container specific interfaces, base classes or annotations.

public class SinpleMvielLister {

/1 the Sinpl eMvielLister has a dependency on a Myvi eFi nder
private Movi eFi nder novi eFi nder

/'l a constructor so that the Spring container can 'inject' a MpvieFinder

publ i c Si npl eMovi eLi st er (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder
}

/'l business |logic that actually 'uses' the injected MvieFinder is omtted..

Constructor argument resolution

Constructor argument resolution matching occurs using the argument's type. If no potential ambiguity
exists in the constructor arguments of a bean definition, then the order in which the constructor arguments
are defined in a bean definition is the order in which those arguments are supplied to the appropriate
constructor when the bean is being instantiated. Consider the following class:

package Xx.y;

public class Foo {

public Foo(Bar bar, Baz baz) ({
...
}

}

No potential ambiguity exists, assuming that Bar and Baz classes are not related by inheritance. Thus the
following configuration works fine, and you do not need to specify the constructor argument indexes
and/or types explicitly inthe<const r uct or - ar g/ > element.

<beans>
<bean id="foo" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
</ bean>

<bean id="bar" class="x.y.Bar"/>
<bean id="baz" class="x.y.Baz"/>

</ beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with the
preceding example). When a simple type is used, such as <val ue>t r ue<val ue>, Spring cannot
determine the type of the value, and so cannot match by type without help. Consider the following class:

package exanpl es

public class Exanpl eBean {

31 Reference Documentation 45



Spring Framework

/'l No. of years to the calculate the Utinmte Answer
private int years;

/1 The Answer to Life, the Universe, and Everything
private String ultimteAnswer;

publ i ¢ Exanpl eBean(int years, String ultimteAnswer) {
this.years = years
this.ultimteAnswer = ultinateAnswer;

Constructor argument type matching

In the preceding scenario, the container can use type matching with simple types if you explicitly specify
the type of the constructor argument using thet ype attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int" val ue="7500000"/>
<constructor-arg type="java.lang. String" val ue="42"/>
</ bean>

Constructor argument index

Usethei ndex attribute to specify explicitly the index of constructor arguments. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg index="0" val ue="7500000"/ >
<constructor-arg index="1" val ue="42"/>

</ bean>

In addition to resolving the ambiguity of multiple simple values, specifying an index resolves ambiguity
where a constructor has two arguments of the same type. Note that the index is O based.

Constructor argument name

As of Spring 3.0 you can also use the constructor parameter name for value disambiguation:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg name="years" val ue="7500000"/>
<constructor-arg nanme="ul ti mat eanswer" val ue="42"/>
</ bean>

Keep in mind that to make this work out of the box your code must be compiled with the debug flag
enabled so that Spring can look up the parameter name from the constructor. If you can't compile your
code with debug flag (or don't want to) you can use @Const r uct or Properti es JDK annotation to
explicitly name your constructor arguments. The sample class would then have to look as follows:

package exanpl es
public class Exanpl eBean {
// Fields omitted

@onstructorProperties({"years", "ultinateAnswer"})
publ i ¢ Exanpl eBean(int years, String ultinmteAnswer) {

31 Reference Documentation 46


http://download.oracle.com/javase/6/docs/api/java/beans/ConstructorProperties.html

Spring Framework

this.years = years;
this.ultimteAnswer = ulti mat eAnswer;

Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your beans after invoking a
no-argument constructor or no-argument st at i ¢ factory method to instantiate your bean.

The following example shows a class that can only be dependency-injected using pure setter injection.
This class is conventional Java. It is a POJO that has no dependencies on container specific interfaces,
base classes or annotations.

public class SinpleMvieLister {

/1 the SinpleMvielLister has a dependency on the MovieFi nder
private MovieFi nder novi eFi nder;

/'l a setter nethod so that the Spring container can 'inject' a MyvieFi nder
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder;

}

/] business |logic that actually 'uses' the injected MyvieFinder is omtted...

The Appl i cati onCont ext supports constructor- and setter-based DI for the beans it manages. It aso
supports setter-based DI after some dependencies are already injected through the constructor approach.
You configure the dependencies in the form of a BeanDefi nition, which you use with
Propert yEdi t or instances to convert properties from one format to another. However, most Spring
users do not work with these classes directly (programmatically), but rather with an XML definition file
that is then converted internally into instances of these classes, and used to load an entire Spring 10C
container instance.

Constructor-based or setter-based DI?

Since you can mix both, Constructor- and Setter-based DI, it is a good rule of thumb to use
constructor arguments for mandatory dependencies and setters for optional dependencies. Note that
the use of a @Required annotation on a setter can be used to make setters required dependencies.

The Spring team generally advocates setter injection, because large numbers of constructor
arguments can get unwieldy, especially when properties are optional. Setter methods also make
objects of that class amenable to reconfiguration or re-injection later. Management through JMX
MBeans is a compelling use case.

Some purists favor constructor-based injection. Supplying all object dependencies means that the
object is always returned to client (calling) code in a totally initialized state. The disadvantage is
that the object becomes less amenable to reconfiguration and re-injection.

3.1 Reference Documentation 47



Spring Framework

Use the DI that makes the most sense for a particular class. Sometimes, when dealing with
third-party classes to which you do not have the source, the choice is made for you. A legacy class
may not expose any setter methods, and so constructor injection is the only available DI.

Dependency resolution process

The container performs bean dependency resolution as follows:

1

The Appl i cat i onCont ext is created and initialized with configuration metadata that describes all
the beans. Configuration metadata can be specified via XML, Java code or annotations.

For each bean, its dependencies are expressed in the form of properties, constructor arguments, or
arguments to the static-factory method if you are using that instead of a normal constructor. These
dependencies are provided to the bean, when the bean is actually created.

Each property or constructor argument is an actual definition of the value to set, or a reference to
another bean in the container.

Each property or constructor argument which is a value is converted from its specified format to the
actual type of that property or constructor argument. By default Spring can convert a value supplied in
string format to all built-in types, such asi nt, | ong, St ri ng, bool ean, etc.

The Spring container validates the configuration of each bean as the container is created, including the
validation of whether bean reference properties refer to valid beans. However, the bean properties
themselves are not set until the bean is actually created. Beans that are singleton-scoped and set to be
pre-instantiated (the default) are created when the container is created. Scopes are defined in Section 4.5,
“Bean scopes’ Otherwise, the bean is created only when it is requested. Creation of a bean potentially
causes a graph of beans to be created, as the bean's dependencies and its dependencies dependencies (and
S0 on) are created and assigned.

Circular dependencies

If you use predominantly constructor injection, it is possible to create an unresolvable circular
dependency scenario.

For example: Class A requires an instance of class B through constructor injection, and class B
reguires an instance of class A through constructor injection. If you configure beans for classes A
and B to be injected into each other, the Spring 10C container detects this circular reference at
runtime, and throwsaBeanCurr ent | yl nCr eat i onExcepti on.

One possible solution is to edit the source code of some classes to be configured by setters rather
than constructors. Alternatively, avoid constructor injection and use setter injection only. In other
words, although it is not recommended, you can configure circular dependencies with setter

31 Reference Documentation 48



Spring Framework

injection.

Unlike the typical case (with no circular dependencies), a circular dependency between bean A and
bean B forces one of the beans to be injected into the other prior to being fully initialized itself (a
classic chicken/egg scenario).

Y ou can generally trust Spring to do the right thing. It detects configuration problems, such as references
to non-existent beans and circular dependencies, at container load-time. Spring sets properties and
resolves dependencies as late as possible, when the bean is actually created. This means that a Spring
container which has loaded correctly can later generate an exception when you reguest an object if there
is aproblem creating that object or one of its dependencies. For example, the bean throws an exception as
aresult of amissing or invalid property. This potentially delayed visibility of some configuration issuesis
why Appl i cat i onCont ext implementations by default pre-instantiate singleton beans. At the cost of
some upfront time and memory to create these beans before they are actually needed, you discover
configuration issues when the Appl i cat i onCont ext is created, not later. You can still override this
default behavior so that singleton beans will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being injected into a
dependent bean, each collaborating bean is totally configured prior to being injected into the dependent
bean. This means that if bean A has a dependency on bean B, the Spring 10C container completely
configures bean B prior to invoking the setter method on bean A. In other words, the bean is instantiated
(if not a pre-instantiated singleton), its dependencies are set, and the relevant lifecycle methods (such as a
configured init method or the I nitializingBean callback method) are invoked.

Examples of dependency injection

The following example uses XML-based configuration metadata for setter-based DI. A small part of a
Spring XML configuration file specifies some bean definitions:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >

<l-- setter injection using the nested <ref/> el enent -->
<property name="beanOne"><ref bean="anot her Exanpl eBean"/></ property>

<l-- setter injection using the neater 'ref' attribute -->
<property name="beanTwo" ref="yet Anot her Bean"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

public voi d set BeanOne( Anot her Bean beanOne) ({
thi s. beanOne = beanOne;

31 Reference Documentation 49



Spring Framework

}

public voi d set BeanTwo( Yet Anot her Bean beanTwo) {
this. beanTwo = beanTwo;

}

public void setlntegerProperty(int i) {
this.i =i;

}

}

In the preceding example, setters are declared to match against the properties specified in the XML file.
The following example uses constructor-based DI :

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >

<l-- constructor injection using the nested <ref/> el enent -->
<constructor-arg>

<ref bean="anot her Exanpl eBean"/ >
</ constructor-arg>

<l-- constructor injection using the neater 'ref' attribute -->
<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg type="int" value="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

publ i ¢ Exanpl eBean(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
thi s. beanOne = anot her Bean
t hi s. beanTwo yet Anot her Bean
this.i =1i;

The constructor arguments specified in the bean definition will be used as arguments to the constructor of
the Exanpl eBean.

Now consider a variant of this example, where instead of using a constructor, Spring is told to cal a
st at i ¢ factory method to return an instance of the object:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"
factory-met hod="creat el nst ance" >

<constructor-arg ref="anot her Exanpl eBean"/>

<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

31 Reference Documentation 50



Spring Framework

/'l a private constructor
private Exanpl eBean(...) {

_—

/] a static factory nethod; the argunments to this nmethod can be
/'l considered the dependenci es of the bean that is returned,
/'l regardl ess of how those argunments are actually used.
public static Exanpl eBean createl nstance (
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {

Exanpl eBean eb = new Exanpl eBean (...);
/| some other operations...
return eb;

Arguments to the st at i ¢ factory method are supplied via <const r uct or - ar g/ > elements, exactly
the same as if a constructor had actually been used. The type of the class being returned by the factory
method does not have to be of the same type as the class that contains the st at i ¢ factory method,
athough in this example it is. An instance (non-static) factory method would be used in an essentialy
identical fashion (aside from the use of thef act or y- bean attribute instead of the cl ass attribute), so
details will not be discussed here.

Dependencies and configuration in detail

As mentioned in the previous section, you can define bean properties and constructor arguments as
references to other managed beans (collaborators), or as values defined inline. Spring's XML-based
configuration metadata supports sub-element types within its <property/> and
<const ruct or - ar g/ > elementsfor this purpose.

Straight values (primitives, Stri ngs, and so on)

The val ue attribute of the <pr operty/ > element specifies a property or constructor argument as a
human-readable string representation. As mentioned previoudy, JavaBeans Pr opert yEdi t ors are
used to convert these string values from a St r i ng to the actual type of the property or argument.

<bean id="nyDat aSour ce" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" destroy-nmet hod="cl ose">

<l-- results in a setDriverd assNane(String) call -->

<property name="driverd assNane" val ue="com nysql .jdbc.Driver"/>
<property name="url" val ue="j dbc: mysql://I ocal host: 3306/ mydb"/>
<property name="usernane" val ue="root"/>

<property name="password" val ue="nmasterkaoli"/>

</ bean>

The following example uses the p-namespace for even more succinct XML configuration.

<beans xm ns="http://wwm. spri ngfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. spri ngfranework. org/ schema/ p"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd" >

31 Reference Documentation 51



Spring Framework

<bean i d="nyDat aSour ce" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce"
destroy- nmet hod="cl ose"
p: dri ver G assName="com nysql . j dbc. Dri ver"
p: url="jdbc: nysqgl://1ocal host: 3306/ mydb"
p: user nane="r oot "
p: passwor d="nmast er kaol i "/ >

</ beans>

The preceding XML is more succinct; however, typos are discovered at runtime rather than design time,
unless you use an IDE such as IntelliJ IDEA or the SpringSource Tool Suite (STS) that support automatic
property completion when you create bean definitions. Such IDE assistance is highly recommended.

You can aso configureaj ava. util . Properti es instanceas:

<bean i d="nmappi ngs"
cl ass="org. spri ngframewor k. beans. fact ory. confi g. PropertyPl acehol der Confi gurer" >

<l-- typed as a java.util.Properties -->
<property name="properties">
<val ue>

jdbc. driver.classNane=com nysql . j dbc. Dri ver
jdbc. url =jdbc: mysql ://1 ocal host: 3306/ mydb
</ val ue>
</ property>
</ bean>

The Spring container converts the text inside the <value/> é€ement into a
java. util . Properti es instance by using the JavaBeans Pr oper t yEdi t or mechanism. Thisisa
nice shortcut, and is one of afew places where the Spring team do favor the use of the nested <val ue/ >
element over theval ue attribute style.

The i dr ef element

Thei dr ef element is simply an error-proof way to passtheid (string value - not areference) of another
bean in the container to a<const r uct or - ar g/ > or <pr opert y/ > element.

<bean id="theTarget Bean" class="..."/>

<bean id="theC ientBean" class="...">
<property name="t ar get Nane">
<i dref bean="theTarget Bean" />
</ property>
</ bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

<bean id="theTargetBean" class="..." />
<bean id="client" class="...">

<property name="t arget Name" val ue="t heTar get Bean" />
</ bean>

The first form is preferable to the second, because using thei dr ef tag allows the container to validate at
deployment time that the referenced, named bean actually exists. In the second variation, no validation is

31 Reference Documentation 52


http://www.jetbrains.com/idea/
http://www.springsource.com/products/sts

Spring Framework

performed on the value that is passed to thet ar get Nane property of thecl i ent bean. Typos are only
discovered (with most likely fatal results) when thecl i ent bean is actualy instantiated. If thecl i ent
bean is a prototype bean, this typo and the resulting exception may only be discovered long after the
container is deployed.

Additionally, if the referenced bean is in the same XML unit, and the bean name is the bean id, you can
use the | ocal attribute, which alows the XML parser itself to validate the bean id earlier, at XML
document parse time.

<property name="t ar get Nane">

<l-- a bean with id 'theTarget Bean' nust exist; otherw se an exception will be thrown -->
<idref |ocal ="theTarget Bean"/>

</ property>

A common place (at least in versions earlier than Spring 2.0) where the <idref/> element brings value is
in the configuration of AOP_interceptors in a Pr oxyFact or yBean bean definition. Using <idref/>
elements when you specify the interceptor names prevents you from misspelling an interceptor id.

References to other beans (collaborators)

Ther ef element is the final element inside a <const r uct or - ar g/ > or <pr operty/ > definition
element. Here you set the value of the specified property of a bean to be a reference to another bean (a
collaborator) managed by the container. The referenced bean is a dependency of the bean whose property
will be set, and it is initialized on demand as needed before the property is set. (If the collaborator is a
singleton bean, it may be initialized already by the container.) All references are ultimately a reference to
another object. Scoping and validation depend on whether you specify the id/name of the other object
through thebean, | ocal , or par ent attributes.

Specifying the target bean through the bean attribute of the <r ef / > tag is the most general form, and
alows creation of areference to any bean in the same container or parent container, regardless of whether
it isin the same XML file. The value of the bean attribute may be the same as the i d attribute of the
target bean, or as one of the valuesin the nane attribute of the target bean.

<ref bean="soneBean"/>

Specifying the target bean through the | ocal attribute leverages the ability of the XML parser to
validate XML id references within the same file. The value of the | ocal attribute must be the same as
thei d attribute of the target bean. The XML parser issues an error if no matching element is found in the
same file. As such, using the local variant is the best choice (in order to know about errors as early as
possible) if the target bean isin the same XML file.

<ref |ocal ="soneBean"/>

Specifying the target bean through the par ent attribute creates a reference to a bean that is in a parent
container of the current container. The value of the par ent attribute may be the same as either the i d
attribute of the target bean, or one of the values in the name attribute of the target bean, and the target
bean must be in a parent container of the current one. Y ou use this bean reference variant mainly when
you have a hierarchy of containers and you want to wrap an existing bean in a parent container with a

31 Reference Documentation 53



Spring Framework

proxy that will have the same name as the parent bean.

<l-- in the parent context -->

<bean i d="account Servi ce" cl ass="com fo0o0. Si npl eAccount Servi ce">
<I-- insert dependencies as required as here -->

</ bean>

<l-- in the child (descendant) context -->

<bean id="account Service" <-- bean nane is the same as the parent bean -->
cl ass="org. spri ngframewor k. aop. f r anewor k. Pr oxyFact or yBean" >
<property name="target">

<ref parent="accountService"/> <!-- notice how we refer to the parent bean -->
</ property>
<I-- insert other configuration and dependencies as required here -->
</ bean>
Inner beans

A <bean/ > element inside the <property/ > or <constructor-arg/ > elements defines a
so-called inner bean.

<bean id="outer" class="...">
<I-- instead of using a reference to a target bean, sinply define the target bean inline -->
<property name="target">

<bean cl ass="com exanpl e. Person"> <!-- this is the inner bean -->

<property name="nanme" val ue="Fi ona Apple"/>
<property nanme="age" val ue="25"/>
</ bean>
</ property>
</ bean>

An inner bean definition does not require a defined id or name; the container ignores these values. It also
ignores the scope flag. Inner beans are always anonymous and they are always scoped as prototypes. It
is not possible to inject inner beans into collaborating beans other than into the enclosing bean.

Collections

Inthe<li st/ >, <set/ >, <map/ >, and <pr ops/ > elements, you set the properties and arguments of
theJavaCol | ecti on typesLi st, Set, Map, and Pr operti es, respectively.

<bean i d="noreConpl exChj ect" cl ass="exanpl e. Conpl exChj ect " >

<l-- results in a set Adm nEmail s(java.util.Properties) call -->
<property name="adm nEmail s">
<pr ops>

<prop key="admi ni strator">adm ni strat or @xanpl e. or g</ pr op>
<prop key="support" >support @xanpl e. org</ prop>
<prop key="devel opnment " >devel oprment @xanpl e. or g</ pr op>

</ props>
</ property>
<I-- results in a setSoneList(java.util.List) call -->
<property nanme="soneList">

<list>

<value>a list elenent followed by a reference</val ue>
<ref bean="nyDat aSource" />

</list>
</ property>
<l-- results in a set SoneMap(java.util.Map) call -->
<property nanme="someMap">

<map>

31 Reference Documentation 54



Spring Framework

<entry key="an entry" val ue="just sone string"/>
<entry key ="a ref" val ue-ref="nyDat aSource"/>

</ map>
</ property>
<l-- results in a setSoneSet(java.util.Set) call -->
<property nanme="someSet">

<set >

<val ue>j ust some string</val ue>
<ref bean="nyDat aSource" />
</ set >
</ property>
</ bean>

The value of a map key or value, or a set value, can also again be any of the following elements:

bean | ref | idref | list | set | map | props | value | nul

Collection merging

As of Spring 2.0, the container supports the merging of collections. An application developer can define a
parent-style <l i st/ >, <map/ >, <set/ > or <props/ > element, and have child-style <l i st/ >,
<map/ >, <set/ > or <pr ops/ > elements inherit and override values from the parent collection. That
is, the child collection's values are the result of merging the elements of the parent and child collections,
with the child's collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child bean mechanism. Readers unfamiliar with parent and
child bean definitions may wish to read the relevant section before continuing.

The following example demonstrates collection merging:

<beans>
<bean id="parent" abstract="true" cl ass="exanpl e. Conpl exCbj ect">
<property nanme="adm nEnail s">
<props>
<prop key="admi ni strator">adm ni strat or @xanpl e. conx/ pr op>
<prop key="support" >support @xanpl e. conx/ prop>
</ props>
</ property>
</ bean>
<bean id="child" parent="parent">
<property nanme="adm nEmail s">
<l-- the nerge is specified on the *child* collection definition -->
<props nerge="true">
<prop key="sal es">sal es@xanpl e. conx/ prop>
<prop key="support">support @xanpl e. co. uk</ pr op>
</ props>
</ property>
</ bean>
<beans>

Notice the use of the mer ge=t r ue attribute on the <pr ops/ > element of the adni nEnwai | s property
of the chi | d bean definition. When the chi | d bean is resolved and instantiated by the container, the
resulting instance hasan adm nEmai | s Properti es collection that contains the result of the merging
of the child'sadm nEmai | s collection with the parent'sadm nEmai | s collection.

admi ni strator=adm ni strator @xanpl e. com
sal es=sal es@xanpl e. com

31 Reference Documentation 55



Spring Framework

support =suppor t @xanpl e. co. uk

The child Pr oper ti es collection's value set inherits all property elements from the parent <pr ops/ >,
and the child's value for the suppor t value overrides the value in the parent collection.

This merging behavior applies similarly to the <l i st/ >, <map/ >, and <set / > collection types. In the
specific case of the <l i st/ > element, the semantics associated with the Li st collection type, that is,
the notion of an or der ed collection of values, is maintained; the parent's values precede all of the child
list's values. In the case of the Map, Set , and Pr operti es coallection types, no ordering exists. Hence
no ordering semantics are in effect for the collection types that underlie the associated Map, Set , and
Pr oper ti es implementation types that the container uses internally.

Limitations of collection merging

Y ou cannot merge different collection types (such asa Map and aLi st ), and if you do attempt to do so
an appropriate Except i on is thrown. The ner ge attribute must be specified on the lower, inherited,
child definition; specifying the mer ge attribute on a parent collection definition is redundant and will not
result in the desired merging. The merging feature is available only in Spring 2.0 and later.

Strongly-typed collection (Java 5+ only)

In Java 5 and later, you can use strongly typed collections (using generic types). That is, it is possible to
declare a Col | ect i on type such that it can only contain St ri ng elements (for example). If you are
using Spring to dependency-inject a strongly-typed Col | ect i on into abean, you can take advantage of
Spring's type-conversion support such that the elements of your strongly-typed Col | ect i on instances
are converted to the appropriate type prior to being added to the Col | ect i on.

public class Foo {
private Map<String, Float> accounts

public void setAccounts(Mp<String, Float> accounts) {
this.accounts = accounts
}
}

<beans>
<bean id="fo0" class="x.y.Foo">
<property name="accounts">
<map>
<entry key="one" val ue="9.99"/>
<entry key="two" val ue="2.75"/>
<entry key="six" val ue="3.99"/>
</ map>
</ property>
</ bean>
</ beans>

When the account s property of the f oo bean is prepared for injection, the generics information about
the element type of the strongly-typed Map<St ri ng, Fl oat > isavailable by reflection. Thus Spring's
type conversion infrastructure recognizes the various value elements as being of type Fl oat , and the

31 Reference Documentation 56



Spring Framework

string values 9. 99, 2. 75, and 3. 99 are converted into an actual Fl oat type.

Null and empty string values

Spring treats empty arguments for properties and the like asempty St r i ngs. The following XML-based
configuration metadata snippet sets the email property to the empty St ri ng value (")

<bean cl ass="Exanpl eBean" >
<property name="email" val ue=""/>
</ bean>

The preceding example is equivalent to the following Java code: exanpl eBean. set Emai | ("") . The
<nul | / > element handlesnul | values. For example:

<bean cl ass="Exanpl eBean" >
<property name="emai | "><nul | / ></ pr operty>
</ bean>

The above configuration is equivalent to the following Java code: exanpl eBean. set Enai | (nul ).

XML shortcut with the p-namespace

The p-namespace enables you to use the bean element's attributes, instead of nested <pr operty/ >
elements, to describe your property values and/or collaborating beans.

Spring 2.0 and later supports extensible configuration formats with namespaces, which are based on an
XML Schemadefinition. The beans configuration format discussed in this chapter is defined in an XML
Schema document. However, the p-namespace is not defined in an XSD file and exists only in the core of

Spring.

The following example shows two XML snippets that resolve to the same result: The first uses standard
XML format and the second uses the p-namespace.

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springframework. org/ schema/ p"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd" >

<bean nane="cl assi c" cl ass="com exanpl e. Exanpl eBean" >
<property name="email" val ue="foo@ar.conm'/>
</ bean>

<bean nane="p- nanespace" cl ass="com exanpl e. Exanpl eBean"
p: emai | =" f oo@ar . cont'/ >
</ beans>

The example shows an attribute in the p-namespace called email in the bean definition. This tells Spring
to include a property declaration. As previously mentioned, the p-namespace does not have a schema
definition, so you can set the name of the attribute to the property name.

This next example includes two more bean definitions that both have a reference to another bean:

31 Reference Documentation 57



Spring Framework

<beans xm ns="http://ww. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springfranmewor k. org/ schema/ p"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd" >

<bean nane="j ohn-cl assi ¢c" cl ass="com exanpl e. Person" >
<property name="nanme" val ue="John Doe"/>
<property name="spouse" ref="jane"/>

</ bean>

<bean nane="j ohn- noder n"
cl ass="com exanpl e. Per son"
p: nane="John Doe"
p: spouse-ref="jane"/>

<bean nanme="jane" cl ass="com exanpl e. Person">
<property name="nanme" val ue="Jane Doe"/>
</ bean>
</ beans>

As you can seeg, this example includes not only a property value using the p-namespace, but also uses a
special format to declare property references. Whereas the first bean definition uses <pr operty
nane="spouse" ref="jane"/ > to create areference from bean j ohn to bean j ane, the second
bean definition uses p: spouse-ref ="j ane" as an atribute to do the exact same thing. In this case
spouse isthe property name, whereas the - r ef part indicates that thisis not a straight value but rather
areference to another bean.

Note

The p-namespace is not as flexible as the standard XML format. For example, the format for
declaring property references clashes with properties that end in Ref , whereas the standard
XML format does not. We recommend that you choose your approach carefully and
communicate this to your team members, to avoid producing XML documents that use all
three approaches at the same time.

XML shortcut with the c-namespace

Similar to the the section caled “XML shortcut with the p-namespace’, the c-namespace, newly
introduced in Spring 3.1, allows usage of inlined attributes for configuring the constructor arguments
rather then nested const r uct or - ar g elements.

Let's review the examples from the section called “ Constructor-based dependency injection” with the ¢
namespace:

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: c="http://ww. springframework. org/ schema/ c"
Xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean id="bar" class="x.y.Bar"/>
<bean i d="baz" class="x.y.Baz"/>

31 Reference Documentation 58



Spring Framework

<-- 'traditional' declaration -->

<bean id="fo0" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
<constructor-arg val ue="foo@ar.con'/>

</ bean>

<-- 'c-nanespace' declaration -->
<bean id="fo00" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:enmmil ="foo@ar.conl>

</ beans>

The c: namespace uses the same conventions as the p: one (trailing - r ef for bean references) for
setting the constructor arguments by their names. And just as well, it needs to be declared even though it
isnot defined in an XSD schema (but it exists inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if the bytecode was
compiled without debugging information), one can use fallback to the argument indexes:

<-- 'c-nanmespace' index declaration -->
<bean id="foo0" class="x.y.Foo" c:_O-ref="bar" c:_1-ref="baz">

Note
Due to the XML grammar, the index notation requires the presence of the leading _ as XML
attribute names cannot start with anumber (even though some IDE allow it).

In practice, the constructor resolution mechanism is quite efficient in matching arguments so unless one
really needs to, we recommend using the name notation through-out your configuration.

Compound property names

Y ou can use compound or hested property hames when you set bean properties, aslong as al components
of the path except the final property name are not nul | . Consider the following bean definition.

<bean id="foo" class="foo.Bar">
<property nane="fred. bob. sammy" val ue="123" />
</ bean>

The f oo bean has af r ed property, which has a bob property, which has a samy property, and that
final sammy property is being set to the value 123. In order for this to work, the f r ed property of f oo,
and the bob property of fred must not be null after the bean is constructed, or a
Nul | Poi nt er Except i on isthrown.

Using depends- on

If a bean is a dependency of another that usually means that one bean is set as a property of another.
Typically you accomplish this with the <ref/> element in XML-based configuration metadata.
However, sometimes dependencies between beans are less direct; for example, a static initializer in a
class needs to be triggered, such as database driver registration. The depends-on attribute can

31 Reference Documentation 59



Spring Framework

explicitly force one or more beans to be initialized before the bean using this element is initialized. The
following example usesthe depends- on attribute to express a dependency on a single bean:

<bean i d="beanOne" cl ass="Exanpl eBean" depends- on="nanager"/>

<bean i d="nmanager" cl ass="Manager Bean" />

To express a dependency on multiple beans, supply a list of bean names as the value of the
depends- on attribute, with commas, whitespace and semicolons, used as valid delimiters:

<bean i d="beanOne" cl ass="Exanpl eBean" depends-on="nmanager, account Dao" >
<property name="manager" ref="manager" />
</ bean>

<bean id="manager" cl ass="ManagerBean" />
<bean i d="account Dao" cl ass="x.y.jdbc.JdbcAccount Dao" />

Note

The depends- on attribute in the bean definition can specify both an initialization time
dependency and, in the case of singleton beans only, a corresponding destroy time
dependency. Dependent beans that define adepends- on relationship with a given bean are
destroyed first, prior to the given bean itself being destroyed. Thus depends- on can aso
control shutdown order.

Lazy-initialized beans

By default, Appl i cati onCont ext implementations eagerly create and configure all singleton beans
as part of the initialization process. Generaly, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours or even days
later. When this behavior is not desirable, you can prevent pre-instantiation of a singleton bean by
marking the bean definition as lazy-initialized. A lazy-initialized bean tells the 10C container to create a
bean instance when it isfirst requested, rather than at startup.

In XML, thisbehavior is controlled by thel azy-i ni t attribute on the <bean/ > element; for example:

<bean id="lazy" class="com foo. Expensi veToCr eat eBean" | azy-init="true"/>

<bean name="not. |l azy" class="com f 0o. Anot her Bean"/ >

When the preceding configuration is consumed by an Appl i cat i onCont ext , the bean named | azy
is not eagerly pre-instantiated when the Appl i cat i onCont ext isstarting up, whereasthenot . | azy
bean is eagerly pre-instantiated.

However, when a lazy-initialized bean is a dependency of a singleton bean that is not lazy-initialized, the
Appl i cati onCont ext creates the lazy-initidized bean at startup, because it must satisfy the
singleton's dependencies. The lazy-initialized bean is injected into a singleton bean el sewhere that is not
lazy-initialized.

31 Reference Documentation 60



Spring Framework

You can aso control lazy-initialization at the container level by using the defaul t-1azy-init
attribute on the <beans/ > element; for example:

<beans defaul t-lazy-init="true">
<l-- no beans will be pre-instantiated... -->
</ beans>

Autowiring collaborators

The Spring container can autowire relationships between collaborating beans. Y ou can allow Spring to
resolve collaborators (other beans) automatically for your bean by inspecting the contents of the
Appl i cat i onCont ext . Autowiring has the following advantages:

» Autowiring can significantly reduce the need to specify properties or constructor arguments. (Other
mechanisms such as a bean template discussed elsewhere in this chapter are also valuable in this

regard.)

» Autowiring can update a configuration as your objects evolve. For example, if you need to add a
dependency to a class, that dependency can be satisfied automatically without you needing to modify
the configuration. Thus autowiring can be especialy useful during development, without negating the
option of switching to explicit wiring when the code base becomes more stable.

When using XML-based configuration metadata’, you specify autowire mode for a bean definition with

the aut owi r e attribute of the <bean/ > element. The autowiring functionality has five modes. You

specify autowiring per bean and thus can choose which ones to autowire.

Table 4.2. Autowiring modes

Mode Explanation

no
(Default) No autowiring. Bean references must be defined via a ref eement.

Changing the default setting is not recommended for larger deployments, because
specifying collaborators explicitly gives greater control and clarity. To some extent, it
documents the structure of a system.

byName
Autowiring by property name. Spring looks for a bean with the same name as the
property that needs to be autowired. For example, if a bean definition is set to
autowire by name, and it contains a master property (that is, it has a setMaster(..)
method), Spring looks for a bean definition named mast er, and uses it to set the
property.

byType

Allows a property to be autowired if exactly one bean of the property type existsin the
container. If more than one exists, a fatal exception is thrown, which indicates that

2See the section called Dependency injection”

31 Reference Documentation 61



Spring Framework

Mode Explanation

you may not use byType autowiring for that bean. If there are no matching beans,
nothing happens; the property is not set.

constructor
Analogous to byType, but applies to constructor arguments. If there is not exactly one

bean of the constructor argument type in the container, afatal error is raised.

With byType or constructor autowiring mode, you can wire arrays and typed-collections. In such cases all
autowire candidates within the container that match the expected type are provided to satisfy the
dependency. You can autowire strongly-typed Maps if the expected key type is St ri ng. An autowired
Maps values will consist of al bean instances that match the expected type, and the Maps keys will
contain the corresponding bean names.

You can combine autowire behavior with dependency checking, which is performed after autowiring
completes.

Limitations and disadvantages of autowiring

Autowiring works best when it is used consistently across a project. If autowiring is not used in general, it
might be confusing to developers to use it to wire only one or two bean definitions.

Consider the limitations and disadvantages of autowiring:

» Explicit dependencies in property and construct or - ar g settings always override autowiring.
You cannot autowire so-called simple properties such as primitives, St ri ngs, and Cl asses (and
arrays of such simple properties). This limitation is by-design.

» Autowiring isless exact than explicit wiring. Although, as noted in the above table, Spring is careful to
avoid guessing in case of ambiguity that might have unexpected results, the relationships between your
Spring-managed objects are no longer documented explicitly.

» Wiring information may not be available to tools that may generate documentation from a Spring
container.

» Multiple bean definitions within the container may match the type specified by the setter method or
constructor argument to be autowired. For arrays, collections, or Maps, this is not necessarily a
problem. However for dependencies that expect a single value, this ambiguity is not arbitrarily
resolved. If no unique bean definition is available, an exception is thrown.

In the latter scenario, you have several options:
» Abandon autowiring in favor of explicit wiring.

» Avoid autowiring for a bean definition by setting itsaut ow r e- candi dat e attributesto f al se as

31 Reference Documentation 62



Spring Framework

described in the next section.

» Designate a single bean definition as the primary candidate by setting the pri mary attribute of its
<bean/ > elementtot r ue.

o If you are using Java 5 or later, implement the more fine-grained control available with
annotation-based configuration, as described in Section 4.9, “Annotation-based container
configuration”.

Excluding a bean from autowiring

On a per-bean basis, you can exclude a bean from autowiring. In Spring's XML format, set the
aut owi r e- candi dat e attribute of the <bean/ > element to f al se; the container makes that
specific bean definition unavailable to the autowiring infrastructure (including annotation style
configurations such as @\ut owi r ed).

You can also limit autowire candidates based on pattern-matching against bean names. The top-level
<beans/ > eement accepts one or more patterns within its def aul t - aut owi r e- candi dat es
attribute. For example, to limit autowire candidate status to any bean whose name ends with Repository,
provide a value of *Repository. To provide multiple patterns, define them in a comma-separated list. An
explicit value of t r ue or f al se for a bean definitions aut owi r e- candi dat e attribute always takes
precedence, and for such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other beans by autowiring. It
does not mean that an excluded bean cannot itself be configured using autowiring. Rather, the bean itself
is not a candidate for autowiring other beans.

Method injection

In most application scenarios, most beans in the container are singletons. When a singleton bean needs to
collaborate with another singleton bean, or a non-singleton bean needs to collaborate with another
non-singleton bean, you typically handle the dependency by defining one bean as a property of the other.
A problem arises when the bean lifecycles are different. Suppose singleton bean A needs to use
non-singleton (prototype) bean B, perhaps on each method invocation on A. The container only creates
the singleton bean A once, and thus only gets one opportunity to set the properties. The container cannot
provide bean A with anew instance of bean B every time one is needed.

A solution is to forego some inversion of control. You can make bean A aware of the container by
implementing the Appl i cat i onCont ext Awar e interface, and by making a getBean("B") call to the
container ask for (a typically new) bean B instance every time bean A needs it. The following is an
example of this approach:

/1 a class that uses a stateful Conmand-style class to perform sone processing
package fiona. appl e;

/'l Spring-APlI inports
i mport org. springframework. beans. BeansExcepti on;

31 Reference Documentation 63



Spring Framework

i mport org.springfranmework. cont ext. Appl i cati onCont ext ;
i nport org.springfranework. cont ext. Appl i cati onCont ext Awar e;

public class ConmandManager i npl enents ApplicationContext Anare {
private ApplicationContext applicationContext;

public Object process(Map comrandState) {
/1 grab a new instance of the appropriate Comrand
Command conmand = creat eComrand() ;
/'l set the state on the (hopefully brand new) Conmand i nstance
conmand. set St at e( comrandSt at e) ;
return command. execute();

}

protected Conmand creat eConmand() {
/1 notice the Spring APl dependency!
return this.applicationContext.getBean("comand", Conmand. cl ass);

}

public void setApplicationContext(ApplicationContext applicationContext)
t hrows BeansException {
thi s. applicationContext = applicationContext;
}
}

The preceding is not desirable, because the business code is aware of and coupled to the Spring
Framework. Method Injection, a somewhat advanced feature of the Spring 10C container, alows this use
case to be handled in a clean fashion.

Y ou can read more about the motivation for Method Injection in this blog entry.

Lookup method injection

L ookup method injection is the ability of the container to override methods on container managed beans,
to return the lookup result for another named bean in the container. The lookup typicaly involves a
prototype bean as in the scenario described in the preceding section. The Spring Framework implements
this method injection by using bytecode generation from the CGLIB library to generate dynamically a
subclass that overrides the method.

Note

For this dynamic subclassing to work, you must have the CGLIB jar(s) in your classpath. The
class that the Spring container will subclass cannot be fi nal , and the method to be
overridden cannot be fi nal either. Also, testing a class that has an abst ract method
requires you to subclass the class yourself and to supply a stub implementation of the
abst r act method. Finally, objects that have been the target of method injection cannot be
serialized.

Looking at the CommandManager class in the previous code snippet, you see that the Spring container

31 Reference Documentation 64


http://blog.springsource.com/2004/08/06/method-injection/

Spring Framework

will dynamically override the implementation of the creat eConmand() method. Your
CommandManager class will not have any Spring dependencies, as can be seen in the reworked
example:

package fiona. appl e
/! no nmore Spring inmports
public abstract class CommandManager {

public Object process(Cbject conmandState) {
/'l grab a new instance of the appropriate Command interface
Command conmand = creat eCommrand() ;
/'l set the state on the (hopefully brand new) Conmand instance
comand. set St at e(comrandSt at e) ;
return comrand. execute();

}

/1 okay... but where is the inplenmentation of this nmethod?
protected abstract Command creat eComrand();

}

In the client class containing the method to be injected (the CommandManager in this case), the method
to be injected requires a signature of the following form:

<public| protected> [abstract] <return-type> theMet hodNane(no-arguments);

If the method is abst r act , the dynamically-generated subclass implements the method. Otherwise, the
dynamically-generated subclass overrides the concrete method defined in the original class. For example:

<l-- a stateful bean deployed as a prototype (non-singleton) -->

<bean id="comrand" cl ass="fi ona. appl e. AsyncComrand" scope="pr ot otype">
<!-- inject dependencies here as required -->

</ bean>

<l-- commandProcessor uses st ateful CommandHel per -->

<bean i d="conmmandManager" cl ass="fi ona. appl e. CoomandManager " >
<l ookup- net hod name="creat eConmand" bean="comrand"/ >
</ bean>

The bean identified as commandManager calls its own method cr eat eConmrand() whenever it needs
anew instance of the command bean. Y ou must be careful to deploy the conmand bean as a prototype, if
that is actually what is needed. If it is deployed as a singleton, the same instance of the command bean is
returned each time.

Tip

The interested reader may also find the Servi celLocat or Fact oryBean (in the
or g. spri ngframewor k. beans. factory. confi g package) to be of use. The
approach used in ServicelLocatorFactoryBean is similar to that of another utility class,
bj ect Fact oryCreati ngFact or yBean, but it allows you to specify your own
lookup interface as opposed to a Spring-specific lookup interface. Consult the JavaDocs for
these classes as well as this blog entry for additional information Servicel ocatorFactoryBean.

31 Reference Documentation 65


http://blog.arendsen.net/index.php/2006/10/05/on-the-servicelocatorfactorybean-dlas-and-the-sustainability-of-code-and-design/

Spring Framework

Arbitrary method replacement

A less useful form of method injection than lookup method Injection is the ability to replace arbitrary
methods in a managed bean with another method implementation. Users may safely skip the rest of this
section until the functionality is actually needed.

With XML-based configuration metadata, you can use the r epl aced- nmet hod element to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with a
method computeV alue, which we want to override:

public class MyVal ueCal cul ator {

public String conputeVal ue(String input) {
/'l some real code...

}

/'l some other nethods...

}

A class implementing the
or g. spri ngframewor k. beans. fact ory. support. Met hodRepl acer interface provides the
new method definition.

/** meant to be used to override the existing conputeVal ue(String)
i mpl enentation in MyVal ueCal cul at or
*/
public cl ass Repl acenent Conput eVal ue i npl enents Met hodRepl acer {
public Object reinplenment(Object o, Method m Object[] args) throws Throwabl e {

/1 get the input value, work with it, and return a conputed result
String input = (String) args[0];

return ...;

The bean definition to deploy the original class and specify the method override would look like this:

<bean id="nyVal ueCal cul ator" class="x.y.z. MVal ueCal cul at or">

<l-- arbitrary nethod repl acenent -->

<repl aced- net hod nanme="conput eVal ue" repl acer="repl acenent Conput eVal ue" >
<arg-type>String</arg-type>

</ repl aced- net hod>

</ bean>

<bean id="repl acenent Conput eVal ue" cl ass="a. b. c. Repl acenent Conput eVal ue"/>

You can use one or more contained <ar g-t ype/ > elements within the <r epl aced- et hod/ >
element to indicate the method signature of the method being overridden. The signature for the arguments
is necessary only if the method is overloaded and multiple variants exist within the class. For
convenience, the type string for an argument may be a substring of the fully qualified type name. For
example, the following al matchj ava. | ang. Stri ng:

31 Reference Documentation 66



Spring Framework

java.lang. String
String
Str

Because the number of arguments is often enough to distinguish between each possible choice, this
shortcut can save a lot of typing, by alowing you to type only the shortest string that will match an
argument type.

4.5 Bean scopes

When you create a bean definition, you create a recipe for creating actual instances of the class defined by
that bean definition. The idea that a bean definition is a recipe is important, because it means that, as with
aclass, you can create many object instances from a single recipe.

Y ou can control not only the various dependencies and configuration values that are to be plugged into an
object that is created from a particular bean definition, but also the scope of the objects created from a
particular bean definition. This approach is powerful and flexible in that you can choose the scope of the
objects you create through configuration instead of having to bake in the scope of an object at the Java
class level. Beans can be defined to be deployed in one of a number of scopes: out of the box, the Spring
Framework supports five scopes, three of which are available only if you use a web-aware
Appl i cati onCont ext .

The following scopes are supported out of the box. Y ou can also create a custom scope.

Table 4.3. Bean scopes

Scope Description

singleton (Default) Scopes a single bean definition to a
single object instance per Spring 10C container.

prototype Scopes a single bean definition to any number of
object instances.

request Scopes a single bean definition to the lifecycle of a
single HTTP request; that is, each HTTP request
has its own instance of a bean created off the back
of a single bean definition. Only valid in the
context of a web-aware Spring
Appl i cati onCont ext .

session Scopes a single bean definition to the lifecycle of
an HTTP Sessi on. Only valid in the context of a
web-aware Spring Appl i cat i onCont ext .

31 Reference Documentation 67



Spring Framework

Scope Description

global session Scopes a single bean definition to the lifecycle of a
global HTTP Sessi on. Typicaly only valid
when used in a portlet context. Only valid in the
context of a web-aware Spring
Appl i cati onCont ext .

Thread-scoped beans

As of Spring 3.0, a thread scope is available, but is not registered by default. For more
information, see the documentation for SimpleThreadScope. For instructions on how to
register this or any other custom scope, see the section called “Using a custom scope”.

The singleton scope

Only one shared instance of a singleton bean is managed, and al requests for beans with an id or ids
matching that bean definition result in that one specific bean instance being returned by the Spring
container.

To put it another way, when you define a bean definition and it is scoped as a singleton, the Spring 10C
container creates exactly one instance of the object defined by that bean definition. This single instance is
stored in a cache of such singleton beans, and all subsequent requests and references for that named bean
return the cached object.

Only one instance is ever created...

<bean id="accountDao" =lass=".__" />

... and this same shared instance is injected into each collaborating object

3.1 Reference Documentation 63


http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/support/SimpleThreadScope.html

Spring Framework

Spring's concept of a singleton bean differs from the Singleton pattern as defined in the Gang of Four
(GoF) patterns book. The GoF Singleton hard-codes the scope of an object such that one and only one
instance of a particular class is created per Cl assLoader . The scope of the Spring singleton is best
described as per container and per bean. This meansthat if you define one bean for a particular classin a
single Spring container, then the Spring container creates one and only one instance of the class defined
by that bean definition. The singleton scope is the default scope in Soring. To define a bean as a singleton
in XML, you would write, for example:

<bean id="account Servi ce" class="com foo. Def aul t Account Servi ce"/>

<l-- the following is equivalent, though redundant (singleton scope is the default) -->
<bean i d="account Servi ce" cl ass="com f 0o. Def aul t Account Servi ce" scope="si ngl eton"/>

The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance
every time arequest for that specific bean is made. That is, the bean is injected into another bean or you
request it through aget Bean() method call on the container. As a rule, use the prototype scope for al
stateful beans and the singleton scope for stateless beans.

The following diagram illustrates the Spring prototype scope. A data access object (DAO) is not typically
configured as a prototype, because a typical DAO does not hold any conversational state; it was just
easier for thisauthor to reuse the core of the singleton diagram.

A brand new bean instance is created...
‘ @
scope="prototype" />
< 1 3 '

... each and every time the prototype is referenced by collaborating beans

The following example defines a bean as a prototype in XML.:

<l-- using spring-beans-2.0.dtd -->
<bean i d="account Servi ce" cl ass="com f o0o. Def aul t Account Servi ce" scope="prototype"/>

3.1 Reference Documentation 69



Spring Framework

In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype bean: the
container instantiates, configures, and otherwise assembles a prototype object, and hands it to the client,
with no further record of that prototype instance. Thus, although initialization lifecycle callback methods
are called on all objects regardless of scope, in the case of prototypes, configured destruction lifecycle
callbacks are not called. The client code must clean up prototype-scoped objects and release expensive
resources that the prototype bean(s) are holding. To get the Spring container to release resources held by
prototype-scoped beans, try using a custom bean post-processor, which holds a reference to beans that
need to be cleaned up.

In some respects, the Spring container's role in regard to a prototype-scoped bean is a replacement for the
Javanew operator. All lifecycle management past that point must be handled by the client. (For details on
the lifecycle of abean in the Spring container, see the section called “Lifecycle callbacks’.)

Singleton beans with prototype-bean dependencies

When you use singleton-scoped beans with dependencies on prototype beans, be aware that dependencies
are resolved at instantiation time. Thus if you dependency-inject a prototype-scoped bean into a
singleton-scoped bean, a new prototype bean is instantiated and then dependency-injected into the
singleton bean. The prototype instance is the sole instance that is ever supplied to the singleton-scoped
bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the prototype-scoped
bean repeatedly at runtime. You cannot dependency-inject a prototype-scoped bean into your singleton
bean, because that injection occurs only once, when the Spring container is instantiating the singleton
bean and resolving and injecting its dependencies. If you need a new instance of a prototype bean at
runtime more than once, see the section called “Method injection”

Request, session, and global session scopes

Ther equest, sessi on, and gl obal sessi on scopes are only available if you use a web-aware
Spring Appl i cati onCont ext implementation (such as Xm WebAppl i cati onCont ext). If you
use these scopes with regular Spring loC containers such as the
Cl assPat hXm Appl i cati onCont ext, you get an ||| egal St at eExcepti on complaining
about an unknown bean scope.

Initial web configuration

To support the scoping of beans at the request, session, and gl obal session levels
(web-scoped beans), some minor initial configuration is required before you define your beans. (This
initial setup is not required for the standard scopes, singleton and prototype.)

How you accomplish thisinitial setup depends on your particular Servlet environment..

If you access scoped beans within Spring Web MV C, in effect, within a request that is processed by the

31 Reference Documentation 70



Spring Framework

Spring Di spat cher Servl et, or Di spatcherPortl et, then no specia setup is necessary:
Di spat cher Servl et and Di spat cher Port | et aready expose al relevant state.

If you use a Servlet 2.4+ web container, with requests processed outside of Spring's DispatcherServlet
(for example, when wusing JSF or Struts), you need to add the following
j avax. servl et. Servl et Request Li st ener to the declarations in your web applications
web. xm file:

<web- app>

<| i stener>
<l i stener-class>
or g. springframewor k. web. cont ext. request . Request Cont ext Li st ener
</listener-class>
</l|istener>

</ web- app>

If you use an older web container (Servlet 2.3), use the provided j avax. servlet.Filter
implementation. The following snippet of XML configuration must be included in the web. xni file of
your web application if you want to access web-scoped beans in requests outside of Spring's
DispatcherServlet on a Servlet 2.3 container. (The filter mapping depends on the surrounding web
application configuration, so you must change it as appropriate.)

<web- app>

<filter>
<filter-name>requestContextFilter</filter-name>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
</filter>
<filter-nmppi ng>
<filter-nane>requestContextFilter</filter-nane>
<url-pattern>/*</url-pattern>
</filter-nmappi ng>

;}er—app>
Di spat cher Servl et, Request Cont ext Li stener and Request ContextFilter al do

exactly the same thing, namely bind the HTTP request object to the Thr ead that is servicing that
request. This makes beans that are request- and session-scoped available further down the call chain.

Request scope

Consider the following bean definition:

<bean id="Iogi nActi on" class="com foo. Logi nActi on" scope="request"/>

The Spring container creates a new instance of the Logi nAct i on bean by using the | ogi nActi on
bean definition for each and every HTTP request. That is, the | ogi nActi on bean is scoped at the
HTTP request level. Y ou can change the internal state of the instance that is created as much as you want,
because other instances created from the same | ogi nAct i on bean definition will not see these changes
in state; they are particular to an individual request. When the request completes processing, the bean that

3.1 Reference Documentation 71



Spring Framework

is scoped to the request is discarded.

Session scope

Consider the following bean definition:

<bean i d="user Preferences" class="comfoo.UserPreferences" scope="session"/>

The Spring container crestes a new instance of the User Preferences bean by using the
user Pr ef er ences bean definition for the lifetime of a single HTTP Sessi on. In other words, the
user Preferences bean is effectively scoped at the HTTP Session level. As with
r equest - scoped beans, you can change the internal state of the instance that is created as much as
you want, knowing that other HTTP Sessi on instances that are also using instances created from the
same user Pr ef er ences bean definition do not see these changes in state, because they are particular
to an individual HTTP Sessi on. When the HTTP Sessi on is eventually discarded, the bean that is
scoped to that particular HTTP Sessi on isalso discarded.

Global session scope

Consider the following bean definition:

<bean i d="user Preferences" class="com foo. UserPreferences" scope="gl obal Sessi on"/>

The gl obal sessi on scopeissimilar to the standard HTTP Sessi on scope (described above), and
applies only in the context of portlet-based web applications. The portlet specification defines the notion
of a global Sessi on that is shared among all portlets that make up a single portlet web application.
Beans defined at the gl obal sessi on scope are scoped (or bound) to the lifetime of the global portlet
Sessi on.

If you write a standard Servlet-based web application and you define one or more beans as having
gl obal sessi on scope, the standard HTTP Sessi on scopeis used, and no error is raised.

Scoped beans as dependencies

The Spring 10C container manages not only the instantiation of your objects (beans), but also the wiring
up of collaborators (or dependencies). If you want to inject (for example) an HTTP request scoped bean
into another bean, you must inject an AOP proxy in place of the scoped bean. That is, you need to inject a
proxy abject that exposes the same public interface as the scoped object but that can aso retrieve the real,
target object from the relevant scope (for example, an HTTP request) and delegate method calls onto the
real object.

Note

You do not need to use the <aop: scoped- pr oxy/ > in conjunction with beans that are
scoped as si ngl et ons or prototypes. If you try to create a scoped proxy for a
singleton bean, the BeanCr eat i onExcept i on israised.

3.1 Reference Documentation 72



Spring Framework

The configuration in the following example is only one line, but it is important to understand the “why”
aswell asthe “how” behind it.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. springframework. or g/ schema/ aop”
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springfranmework. or g/ schema/ aop
http://ww. springframework. or g/ schema/ aop/ spri ng- aop- 3. 0. xsd" >

<l-- an HTTP Sessi on-scoped bean exposed as a proxy -->
<bean i d="user Preferences" class="com foo. UserPreferences" scope="session">

<l-- instructs the container to proxy the surroundi ng bean -->
<aop: scoped- pr oxy/ >

</ bean>

<l-- a singleton-scoped bean injected with a proxy to the above bean -->

<bean i d="user Servi ce" class="com foo. Si npl eUser Servi ce">

<l-- a reference to the proxied userPreferences bean -->
<property name="user Preferences" ref="userPreferences"/>

</ bean>
</ beans>

To create such a proxy, you insert a child <aop: scoped- pr oxy/ > element into a scoped bean
definition. (If you choose class-based proxying, you also need the CGLIB library in your classpath. See
the section called “Choosing the type of proxy to create” and Appendix C, XML Schema-based
configuration.) Why do definitions of beans scoped at ther equest , sessi on, gl obal Sessi on and
custom-scope levels require the <aop: scoped- proxy/ > element ? Let's examine the following
singleton bean definition and contrast it with what you need to define for the aforementioned scopes. (The
following user Pr ef er ences bean definition as it stands is incomplete.)

<bean i d="user Preferences" class="comfoo.UserPreferences" scope="session"/>

<bean i d="user Manager" cl ass="com fo0o. User Manager " >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

In the preceding example, the singleton bean user Manager is injected with a reference to the HTTP
Sessi on-scoped bean user Pr ef er ences. The sdlient point here is that the user Manager bean is
asingleton: it will be instantiated exactly once per container, and its dependencies (in this case only one,
the user Pr ef er ences bean) are also injected only once. This means that the user Manager bean
will only operate on the exact same user Pr ef er ences object, that is, the one that it was originally
injected with.

This is not the behavior you want when injecting a shorter-lived scoped bean into a longer-lived scoped
bean, for example injecting an HTTP Sessi on-scoped collaborating bean as a dependency into
singleton bean. Rather, you need a single user Manager object, and for the lifetime of an HTTP
Sessi on, you need a user Pr ef er ences object that is specific to said HTTP Sessi on. Thus the
container creates an object that exposes the exact same public interface asthe User Pr ef er ences class

31 Reference Documentation 73



Spring Framework

(ideally an object that isa User Pr ef er ences instance) which can fetch thereal User Pr ef er ences
object from the scoping mechanism (HTTP request, Sessi on, etc.). The container injects this proxy
object into the user Manager bean, which is unaware that this User Pr ef er ences reference is a
proxy. In this example, when a User Manager instance invokes a method on the dependency-injected
User Pr ef er ences object, it actually is invoking a method on the proxy. The proxy then fetches the
real User Pr ef er ences object from (in this case) the HTTP Sessi on, and delegates the method
invocation onto the retrieved real User Pr ef er ences object.

Thus you need the following, correct and complete, configuration when injecting r equest -,
sessi on-, and gl obal Sessi on- scoped beansinto collaborating objects:

<bean i d="user Preferences" class="com foo. UserPreferences" scope="session">
<aop: scoped- pr oxy/ >
</ bean>

<bean i d="user Manager" cl ass="com foo. User Manager " >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

Choosing the type of proxy to create

By default, when the Spring container creates a proxy for a bean that is marked up with the
<aop: scoped- pr oxy/ > element, a CGLIB-based class proxy is created. This means that you need to
have the CGLIB library in the classpath of your application.

Note: CGLIB proxies only intercept public method calls! Do not call non-public methods on such a
proxy; they will not be delegated to the scoped target object.

Alternatively, you can configure the Spring container to create standard JDK interface-based proxies for
such scoped beans, by specifying f al se for the value of the pr oxy-t ar get - cl ass attribute of the
<aop: scoped- pr oxy/ > element. Using JDK interface-based proxies means that you do not need
additional libraries in your application classpath to effect such proxying. However, it a'so means that the
class of the scoped bean must implement at least one interface, and that all collaborators into which the
scoped bean isinjected must reference the bean through one of itsinterfaces.

<l -- Defaul tUserPreferences inplenents the UserPreferences interface -->

<bean id="userPreferences" class="com foo. Defaul t User Preferences" scope="sessi on">
<aop: scoped- proxy proxy-target-class="fal se"/>

</ bean>

<bean i d="user Manager" cl ass="com foo. User Manager " >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

For more detailed information about choosing class-based or interface-based proxying, see Section 8.6,
“Proxying mechanisms’.

Custom scopes

As of Spring 2.0, the bean scoping mechanism is extensible. You can define your own scopes, or even

3.1 Reference Documentation 74



Spring Framework

redefine existing scopes, although the latter is considered bad practice and you cannot override the
built-in si ngl et on and pr ot ot ype scopes.

Creating a custom scope

To integrate your custom scope(s) into the Spring container, you need to implement the
org. spri ngframewor k. beans. fact ory. confi g. Scope interface, which is described in this
section. For an idea of how to implement your own scopes, see the Scope implementations that are
supplied with the Spring Framework itself and the Scope Javadoc, which explains the methods you need
to implement in more detail.

The Scope interface has four methods to get objects from the scope, remove them from the scope, and
allow them to be destroyed.

The following method returns the object from the underlying scope. The session scope implementation,
for example, returns the session-scoped bean (and if it does not exist, the method returns a new instance
of the bean, after having bound it to the session for future reference).

hj ect get(String name, ObjectFactory object Factory)

The following method removes the object from the underlying scope. The session scope implementation
for example, removes the session-scoped bean from the underlying session. The object should be
returned, but you can return null if the object with the specified name is not found.

bj ect renove(String nane)

The following method registers the callbacks the scope should execute when it is destroyed or when the
specified object in the scope is destroyed. Refer to the Javadoc or a Spring scope implementation for
more information on destruction callbacks.

voi d regi sterDestructionCall back(String name, Runnable destructionCall back)

The following method obtains the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session scoped implementation, thisidentifier can be the session identifier.

String get Conversationl d()

Using a custom scope

After you write and test one or more custom Scope implementations, you need to make the Spring
container aware of your new scope(s). The following method is the central method to register a new
Scope with the Spring container:

voi d regi sterScope(String scopeNane, Scope scope);

This method is declared on the Conf i gur abl eBeanFact or y interface, which is available on most of

31 Reference Documentation 75


http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/config/Scope.html

Spring Framework

the concrete Appl i cati onCont ext implementations that ship with Spring via the BeanFactory
property.

The first argument to the r egi st er Scope(..) method is the unique name associated with a scope;
examples of such names in the Spring container itself are si ngl et on and pr ot ot ype. The second
argument to the regi sterScope(..) method is an actual instance of the custom Scope
implementation that you wish to register and use.

Suppose that you write your custom Scope implementation, and then register it as below.

Note

The example below uses Si npl eThr eadScope which is included with Spring, but not
registered by default. The instructions would be the same for your own custom Scope
implementations.

Scope threadScope = new Si npl eThr eadScope() ;
beanFactory. regi st er Scope("thread", threadScope);

Y ou then create bean definitions that adhere to the scoping rules of your custom Scope:

<bean id="..." class="..." scope="thread">

With a custom Scope implementation, you are not limited to programmatic registration of the scope.
Y ou can also do the Scope registration declaratively, using the Cust onScopeConf i gur er class:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. springframework. org/ schema/ aop”
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springfranmewor k. or g/ schema/ aop
http://ww. springframework. or g/ schema/ aop/ spri ng- aop- 3. 0. xsd" >

<bean cl ass="org. spri ngframewor k. beans. f act ory. confi g. Cust onScopeConfi gurer">
<property nanme="scopes">
<n’ap>
<entry key="thread">
<bean cl ass="org. spri ngframewor k. cont ext . support. Si npl eThr eadScope"/ >
</entry>
</ map>
</ property>
</ bean>

<bean id="bar" class="x.y.Bar" scope="thread">
<property name="name" val ue="Ri ck"/>
<aop: scoped- pr oxy/ >

</ bean>

<bean id="foo0" class="x.y.Foo">
<property name="bar" ref="bar"/>
</ bean>

</ beans>

31 Reference Documentation 76



Spring Framework

Note

When you place <aop:scoped-proxy/> in a Fact or yBean implementation, it is the factory
bean itself that is scoped, not the object returned from get Cbj ect () .

4.6 Customizing the nature of a bean

Lifecycle callbacks

To interact with the container's management of the bean lifecycle, you can implement the Spring
InitializingBean and Di sposabl eBean interfaces. The container cals
after PropertiesSet () fortheformer and destroy() for the latter to allow the bean to perform
certain actions upon initialization and destruction of your beans. You can aso achieve the same
integration with the container without coupling your classes to Spring interfaces through the use of
init-method and destroy method object definition metadata.

Internally, the Spring Framework uses BeanPost Pr ocessor implementations to process any callback
interfaces it can find and call the appropriate methods. If you need custom features or other lifecycle
behavior Spring does not offer out-of-the-box, you can implement a BeanPost Pr ocessor yourself.
For more information, see Section 4.8, “ Container Extension Points’.

In addition to the initialization and destruction callbacks, Spring-managed objects may also implement
the Li f ecycl e interface so that those objects can participate in the startup and shutdown process as
driven by the container's own lifecycle.

The lifecycle callback interfaces are described in this section.

Initialization callbacks

Theor g. spri ngframewor k. beans. factory. I nitializi ngBean interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by the container. The
Initializi ngBean interface specifies asingle method:

void afterPropertiesSet() throws Exception

It is recommended that you do not use the | ni ti al i zi ngBean interface because it unnecessarily
couples the code to Spring. Alternatively, specify a POJO initialization method. In the case of
XML-based configuration metadata, you use the i ni t - net hod attribute to specify the name of the
method that has a void no-argument signature. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-nmethod="init"/>

public class Exanpl eBean {

3.1 Reference Documentation 77



Spring Framework

public void init() {
/'l do some initialization work

}
}

..Isexactly thesame as...

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

publ i c cl ass Anot her Exanpl eBean i npl enents InitializingBean {

public void afterPropertiesSet() {
/] do sone initialization work

}
}

... but does not couple the code to Spring.

Destruction callbacks

Implementing the org. springfranework. beans. factory. Di sposabl eBean interface
allows a bean to get a callback when the container containing it is destroyed. The Di sposabl eBean
interface specifies a single method:

voi d destroy() throws Exception

It is recommended that you do not use the Di sposabl eBean calback interface because it
unnecessarily couples the code to Spring. Alternatively, specify a generic method that is supported by
bean definitions. With XML-based configuration metadata, you use the dest r oy- net hod attribute on
the <bean/ >. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy- nmet hod="cl eanup"/>

public class Exanpl eBean {

public void cleanup() {
/1 do sone destruction work (like releasing pooled connections)
}

}
..Isexactly thesame as...
<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public cl ass Anot her Exanpl eBean i npl enents Di sposabl eBean {

public void destroy() {
/1 do sone destruction work (like releasing pooled connections)

}
}

... but does not couple the code to Spring.

31 Reference Documentation 78



Spring Framework

Default initialization and destroy methods

When you write initialization and destroy method callbacks that do not use the Spring-specific
InitializingBean and Di sposabl eBean callback interfaces, you typically write methods with
namessuchasinit(),initialize(),di spose(),andsoon. |dedly, the names of such lifecycle
callback methods are standardized across a project so that all developers use the same method names and
ensure consistency.

You can configure the Spring container to | ook for named initialization and destroy callback method
names on every bean. This means that you, as an application developer, can write your application classes
and wuse an initidlization callback caled init(), without having to configure an
i nit-method="init" attribute with each bean definition. The Spring 10C container cals that
method when the bean is created (and in accordance with the standard lifecycle callback contract
described previoudly). This feature aso enforces a consistent naming convention for initialization and
destroy method callbacks.

Suppose that your initialization callback methods are named i ni t () and destroy callback methods are
named dest r oy() . Your classwill resemble the class in the following example.

public class Defaul tBl ogService inplenents Bl ogService {
private Bl ogDao bl ogDao;

public voi d setBl ogDao( Bl ogDao bl ogDao) {
t hi s. bl ogDao = bl ogDao;
}

/1l this is (unsurprisingly) the initialization callback nethod
public void init() {
if (this.blogbDao == null) {
throw new || | egal St at eException("The [ bl ogDao] property nust be set.");
}

<beans default-init-nethod="init">

<bean id="bl ogServi ce" class="com foo. Def aul t Bl ogServi ce">
<property name="bl ogbDao" ref="bl ogDao" />
</ bean>

</ beans>

The presence of the def aul t - i ni t - met hod attribute on the top-level <beans/ > element attribute
causes the Spring 1oC container to recognize a method called i ni t on beans as the initialization method
callback. When a bean is created and assembled, if the bean class has such a method, it isinvoked at the
appropriate time.

You configure destroy method callbacks similaly (in XML, that is) by using the
def aul t - dest r oy- net hod attribute on the top-level <beans/ > element.

Where existing bean classes aready have callback methods that are named at variance with the

31 Reference Documentation 79



Spring Framework

convention, you can override the default by specifying (in XML, that is) the method name using the
i nit-methodanddestroy- net hod attributes of the <bean/> itself.

The Spring container guarantees that a configured initialization callback is called immediately after a
bean is supplied with al dependencies. Thus the initialization callback is called on the raw bean
reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target bean
is fully created first, then an AOP proxy (for example) with its interceptor chain is applied. If the target
bean and the proxy are defined separately, your code can even interact with the raw target bean,
bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the init method, because
doing so would couple the lifecycle of the target bean with its proxy/interceptors and leave strange
semantics when your code interacts directly to the raw target bean.

Combining lifecycle mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the
InitializingBean and Di sposabl eBean callback interfaces; customi nit () and dest roy()
methods;, and the @Post Construct and @Pr eDestr oy annotations. You can combine these
mechanisms to control a given bean.

Note

If multiple lifecycle mechanisms are configured for a bean, and each mechanism is
configured with a different method name, then each configured method is executed in the
order listed below. However, if the same method name is configured - for example, i ni t ()
for an initialization method - for more than one of these lifecycle mechanisms, that method is
executed once, as explained in the preceding section.

Multiple lifecycle mechanisms configured for the same bean, with different initialization methods, are
called asfollows:

» Methods annotated with @ost Const r uct

o afterPropertiesSet () asdefinedbythel niti alizi ngBean callback interface
* A custom configuredi ni t () method

Destroy methods are called in the same order:

» Methods annotated with @r eDest r oy

» destroy() asdefined by the Di sposabl eBean callback interface

» A custom configured dest r oy () method

Startup and shutdown callbacks

31 Reference Documentation 80



Spring Framework

The Li f ecycl e interface defines the essential methods for any object that has its own lifecycle
requirements (e.g. starts and stops some background process):
public interface Lifecycle {
void start();
voi d stop();

bool ean i sRunni ng();

}

Any Spring-managed object may implement that interface. Then, when the ApplicationContext itself
starts and stops, it will cascade those callsto al Lifecycle implementations defined within that context. It
doesthisby delegatingtoali f ecycl ePr ocessor:

public interface LifecycleProcessor extends Lifecycle {

voi d onRefresh();

voi d ond ose();

}

Noticethat theLi f ecycl ePr ocessor isitsalf an extension of theLi f ecycl e interface. It also adds
two other methods for reacting to the context being refreshed and closed.

The order of startup and shutdown invocations can be important. If a "depends-on" relationship exists
between any two objects, the dependent side will start after its dependency, and it will stop before its
dependency. However, at times the direct dependencies are unknown. Y ou may only know that objects of
a certain type should start prior to objects of another type. In those cases, the Smart Li f ecycl e
interface defines another option, namely the get Phase() method as defined on its super-interface,
Phased.

public interface Phased {

i nt getPhase();

public interface SmartlLifecycle extends Lifecycle, Phased {
bool ean i sAutoStartup();

voi d stop(Runnabl e cal | back);

}

When starting, the objects with the lowest phase start first, and when stopping, the reverse order is
followed. Therefore, an object that implements Snart Li f ecycl e and whose getPhase() method
returns| nt eger . M N_VALUE would be among the first to start and the last to stop. At the other end of
the spectrum, a phase value of | nt eger . MAX_VALUE would indicate that the object should be started
last and stopped first (likely because it depends on other processes to be running). When considering the

31 Reference Documentation 81



Spring Framework

phase value, it's also important to know that the default phase for any "normal" Li f ecycl e object that
does not implement Smart Li f ecycl e would be 0. Therefore, any negative phase value would indicate
that an object should start before those standard components (and stop after them), and vice versafor any
positive phase value.

As you can see the stop method defined by Smar t Li f ecycl e accepts a callback. Any implementation
must invoke that callback's run() method after that implementation's shutdown process is complete. That
enables asynchronous shutdown where necessary since the default implementation of the
Li f ecycl eProcessor interface, Def aul t Li f ecycl eProcessor, will wait up to its timeout
value for the group of objects within each phase to invoke that callback. The default per-phase timeout is
30 seconds. You can override the default lifecycle processor instance by defining a bean named
"lifecycleProcessor" within the context. If you only want to modify the timeout, then defining the
following would be sufficient:

<bean id="Iifecycl eProcessor" class="org.springframework. context.support.DefaultLifecycleProcessor">
<I-- timeout value in mlliseconds -->
<property name="ti meout Per Shut dowmnPhase" val ue="10000"/>

</ bean>

As mentioned, the Li f ecycl ePr ocessor interface defines callback methods for the refreshing and
closing of the context as well. The latter will simply drive the shutdown process as if stop() had been
caled explicitly, but it will happen when the context is closing. The 'refresh’ callback on the other hand
enables another feature of Smart Li f ecycl e beans. When the context is refreshed (after all objects
have been instantiated and initialized), that callback will be invoked, and at that point the default lifecycle
processor will check the boolean value returned by each SmartlLifecycle object's
i sAut oSt art up() method. If "true", then that object will be started at that point rather than waiting
for an explicit invocation of the context's or its own start() method (unlike the context refresh, the context
start does not happen automatically for a standard context implementation). The "phase" value as well as
any "depends-on" relationships will determine the startup order in the same way as described above.

Shutting down the Spring loC container gracefully in non-web applications

Note

This section applies only to non-web applications. Spring's web-based
Appl i cati onCont ext implementations already have code in place to shut down the
Spring 10C container gracefully when the relevant web application is shut down.

If you are using Spring's 10C container in a non-web application environment; for example, in a rich
client desktop environment; you register a shutdown hook with the VM. Doing so ensures a graceful
shutdown and calls the relevant destroy methods on your singleton beans so that all resources are
released. Of course, you must still configure and implement these destroy callbacks correctly.

To register a shutdown hook, you call ther egi st er Shut downHook () method that is declared on the
Abst ract Appl i cati onCont ext class:

i nport org.springfranmework. cont ext. support. Abstract Appl i cati onCont ext ;

31 Reference Documentation 82



Spring Framework

i mport org.springframework. cont ext. support.d assPat hXm Appl i cati onCont ext ;
public final class Boot ({

public static void main(final String[] args) throws Exception {
Abstract Appl i cati onCont ext ctx
= new Cl assPat hXm Appl i cati onCont ext(new String []{"beans.xm "});

/1 add a shutdown hook for the above context...
ct x. regi st er Shut downHook() ;

/'l app runs here...

/1 main nethod exits, hook is called prior to the app shutting down...

Appl i cati onCont ext Awar e and BeanNaneAwar e

When an Appl i cat i onCont ext creates a class that implements the
org. spri ngfranmewor k. cont ext. Appl i cati onCont ext Awar e interface, the class is
provided with areference to that Appl i cat i onCont ext .

public interface ApplicationContextAware {

voi d set Appli cati onCont ext (Applicati onCont ext applicationContext) throws BeansExcepti on;
}

Thus beans can manipulate programmatically the Appl i cat i onCont ext that created them, through
the Appl i cat i onCont ext interface, or by casting the reference to a known subclass of this interface,
such as Conf i gur abl eAppl i cati onCont ext, which exposes additional functionality. One use
would be the programmatic retrieval of other beans. Sometimes this capability is useful; however, in
general you should avoid it, because it couples the code to Spring and does not follow the Inversion of
Control style, where collaborators are provided to beans as properties. Other methods of the
ApplicationContext provide access to file resources, publishing application events, and accessing a
MessageSource. These additional features are described in Section 4.14, “Additional Capahilities of the
ApplicationContext”

As of Spring 2.5, autowiring is another alternative to obtain reference to the Appl i cat i onCont ext .
The "traditional” construct or and byType autowiring modes (as described in the section called
“Autowiring collaborators’) can provide a dependency of type Appli cati onContext for a
constructor argument or setter method parameter, respectively. For more flexibility, including the ability
to autowire fields and multiple parameter methods, use the new annotation-based autowiring features. If
you do, the Appl i cati onFactory is autowired into a field, constructor argument, or method
parameter that is expecting the BeanFact ory type if the field, constructor, or method in gquestion
carries the @Aut owi r ed annotation. For more information, see the section called “ @Autowired”.

When an ApplicationContext creates a class that implements the
or g. spri ngframewor k. beans. f act ory. BeanNanmeAwar e interface, the class is provided
with areference to the name defined in its associated object definition.

public interface BeanNaneAware {

31 Reference Documentation 83



Spring Framework

voi d set BeanNane(string nane) throws BeansExcepti on;

}

The callback is invoked after population of normal bean properties but before an initialization callback
suchasl ni ti al i zi ngBeansafterPropertiesSet or a custom init-method.

Other Awar e interfaces

Besides Appl i cati onCont ext Awar e and BeanNaneAwar e discussed above, Spring offers arange
of Awar e interfaces that allow beans to indicate to the container that they require a certain infrastructure
dependency. The most important Awar e interfaces are summarized below - as a general rule, the nameis
agood indication of the dependency type:

Table 4.4. Awar e interfaces

Name I njected Dependency Explained in...
Appl i cat i onCont ext Awar e Declaring the section caled
Appl i cati onCont ext “ApplicationContextAware and
BeanNameAware’

Appl i cat i onEvent Publ i shefvenaipablisher of the enclosing Section 4.14, “Additional
Appl i cati onCont ext Capabilities of the
ApplicationContext”

BeanCl assLoader Awar e Class loader used to load the the section called “Instantiating

bean classes. beans’
BeanFact or yAwar e Declaring BeanFact ory the section called
“ApplicationContextAware and
BeanNameAware”
BeanNaneAwar e Name of the declaring bean the section called
“ApplicationContextAware and
BeanNameAware”
Boot st rapCont ext Aware  Resource adapter Chapter 24, JCA CCI
Boot st r apCont ext the

container runs in. Typicaly
available only in JCA aware
Appl i cat i onCont ext s

31 Reference Documentation 84



Spring Framework

Name

LoadTi meWeaver Awar e

MessageSour ceAwar e

Noti fi cati onPubl i sher Ana®mring

I njected Dependency

Defined weaver for processing
class definition at load time

Configured strategy for resolving
messages (with  support  for
parametrization and
internationalization)
IMX notification
publisher

Explained in...

the section called “Load-time
weaving with Aspectd in the
Spring Framework”

Section 414, “Additional
Capabilities of the
ApplicationContext”

Section 23.7, “Notifications”

Port | et Confi gAwar e

Por t | et Cont ext Awar e

Resour ceLoader Awar e

Ser vl et Conf i gAwar e

Ser vl et Cont ext Awar e

Current Portl et Config the
container runsin. Vaid only ina
web-aware Spring
Appl i cat i onCont ext

Current Por t | et Cont ext the
container runsin. Valid only in a
web-aware Spring
Appl i cati onCont ext

Configured loader for low-level
access to resources

Current Servl et Confi g the
container runsin. Valid only in a
web-aware Spring
Appl i cat i onCont ext

Current Ser vl et Cont ext the
container runsin. Vaid only in a
web-aware Spring
Appl i cat i onCont ext

Chapter 19, Portlet MVC
Framework
Chapter 19, Portlet MVC
Framework

Chapter 5, Resources

Chapter 16, Web MVC
framework
Chapter 16, Web MVC
framework

Note again that usage of these interfaces ties your code to the Spring APl and does not follow the
Inversion of Control style. As such, they are recommended for infrastructure beans that require
programmeatic access to the container.

31

Reference Documentation

85



Spring Framework

4.7 Bean definition inheritance

A bean definition can contain a lot of configuration information, including constructor arguments,
property values, and container-specific information such as initialization method, static factory method
name, and so on. A child bean definition inherits configuration data from a parent definition. The child
definition can override some values, or add others, as needed. Using parent and child bean definitions can
save alot of typing. Effectively, thisis aform of templating.

If you work with an Appl i cati onCont ext interface programmatically, child bean definitions are
represented by the Chi | dBeanDefi ni ti on class. Most users do not work with them on this level,
instead configuring bean definitions declaratively in something like the
C assPat hXm Appl i cati onCont ext. When you use XML-based configuration metadata, you
indicate a child bean definition by using the par ent attribute, specifying the parent bean as the value of
this attribute.

<bean id="inheritedTestBean" abstract="true"
cl ass="org. spri ngframewor k. beans. Test Bean" >
<property name="nanme" val ue="parent"/>

</ bean>

<bean id="inheritsWthDifferentC ass"
cl ass="org. spri ngframewor k. beans. Deri vedTest Bean"
parent="inheritedTest Bean" init-method="initialize">

<property nanme="nanme" val ue="override"/>
<l-- the age property value of 1 will be inherited from parent -->

</ bean>

A child bean definition uses the bean class from the parent definition if none is specified, but can also
override it. In the latter case, the child bean class must be compatible with the parent, that is, it must
accept the parent's property values.

A child bean definition inherits constructor argument values, property values, and method overrides from
the parent, with the option to add new values. Any initialization method, destroy method, and/or st at i c
factory method settings that you specify will override the corresponding parent settings.

The remaining settings are always taken from the child definition: depends on, autowire mode,
dependency check, singleton, scope, lazy init.

The preceding example explicitly marks the parent bean definition as abstract by using the abst r act
attribute. If the parent definition does not specify a class, explicitly marking the parent bean definition as
abstract isrequired, asfollows:

<bean id="inheritedTest BeanWt hout Cl ass" abstract="true">
<property name="name" val ue="parent"/>
<property name="age" val ue="1"/>

</ bean>

<bean id="inheritsWthd ass" class="org. spri ngfranework. beans. Deri vedTest Bean"
parent ="inheritedTest BeanWt hout Cl ass" init-nethod="initialize">

31 Reference Documentation 86



Spring Framework

<property nanme="nanme" val ue="override"/>
<I-- age will inherit the value of 1 fromthe parent bean definition-->
</ bean>

The parent bean cannot be instantiated on its own because it isincomplete, and it is also explicitly marked
as abstract. When a definition is abst r act like this, it is usable only as a pure template bean
definition that serves as a parent definition for child definitions. Trying to use such an abst r act parent
bean on its own, by referring to it as aref property of another bean or doing an explicit get Bean() call
with  the parent bean id, returns an error. Similarly, the container's interna
prel nstanti at eSi ngl et ons() method ignores bean definitions that are defined as abstract.

Note

Appl i cat i onCont ext pre-instantiates all singletons by default. Therefore, it isimportant
(at least for singleton beans) that if you have a (parent) bean definition which you intend to
use only as a template, and this definition specifies a class, you must make sure to set the
abstract attribute to true, otherwise the application context will actualy (attempt to)
pre-instantiate the abst r act bean.

4.8 Container Extension Points

Typically, an application developer does not need to subclass Appl i cat i onCont ext implementation
classes. Instead, the Spring 1oC container can be extended by plugging in implementations of special
integration interfaces. The next few sections describe these integration interfaces.

Customizing beans using a BeanPost Processor

The BeanPost Pr ocessor interface defines callback methods that you can implement to provide your
own (or override the container's default) instantiation logic, dependency-resolution logic, and so forth. If
you want to implement some custom logic after the Spring container finishes instantiating, configuring,
and initializing a bean, you can plug in one or more BeanPost Pr ocessor implementations.

You can configure multiple BeanPost Pr ocessor instances, and you can control the order in which
these BeanPost Pr ocessor s execute by setting the or der property. You can set this property only if
the BeanPost Processor implements the O dered interface; if you write your own
BeanPost Pr ocessor you should consider implementing the Or der ed interface too. For further
details, consult the Javadoc for the BeanPost Processor and Or der ed interfaces. See dso the note
below on programmatic registration of BeanPost Pr ocessor s

Note

BeanPost Pr ocessor soperate on bean (or object) instances; that isto say, the Spring 10C
container instantiates a bean instance and then BeanPost Pr ocessor sdo their work.

31 Reference Documentation 87



Spring Framework

BeanPost Pr ocessor s are scoped per-container. This is only relevant if you are using
container hierarchies. If you define a BeanPost Pr ocessor in one container, it will only
post-process the beans in that container. In other words, beans that are defined in one
container are not post-processed by a BeanPost Pr ocessor defined in another container,
even if both containers are part of the same hierarchy.

To change the actual bean definition (i.e., the blueprint that defines the bean), you instead
need to use a BeanFact or yPost Processor as described in the section caled
“Customizing configuration metadata with a BeanFactoryPostProcessor” .

The org. springfranework. beans. factory. confi g. BeanPost Processor interface
consists of exactly two callback methods. When such a class is registered as a post-processor with the
container, for each bean instance that is created by the container, the post-processor gets a callback from
the container both before container initialization methods (such as InitializingBean's after PropertiesSet()
and any declared init method) are called as well as after any bean initialization calbacks. The
post-processor can take any action with the bean instance, including ignoring the callback completely. A
bean post-processor typicaly checks for callback interfaces or may wrap a bean with a proxy. Some
Spring AOP infrastructure classes are implemented as bean post-processors in order to provide

proxy-wrapping logic.

An Appl i cati onCont ext automatically detects any beans that are defined in the configuration
metadata which implement the BeanPost Processor interface. The Appli cati onCont ext
registers these beans as post-processors so that they can be called later upon bean creation. Bean
post-processors can be deployed in the container just like any other beans.

Programmatically registering BeanPost Pr ocessor s

While the recommended approach for BeanPost Processor registration is through
Appl i cati onCont ext auto-detection (as described above), it is aso possible to register
them programmatically against a Confi gurabl eBeanFactory using the
addBeanPost Processor method. This can be useful when needing to evauate
conditional logic before registration, or even for copying bean post processors across contexts
in a hierarchy. Note however that BeanPost Pr ocessor s added programmatically do not
respect the Or der ed interface. Here it is the order of registration that dictates the order of
execution. Note also that BeanPost Pr ocessor s registered programmatically are always
processed before those registered through auto-detection, regardless of any explicit ordering.

BeanPost Processor s and AOP auto-proxying

Classes that implement the BeanPost Processor interface are special and are treated
differently by the container. All BeanPost Processor s and beans that they reference
directly are instantiated on startup, as part of the specia startup phase of the
Appl i cati onCont ext. Next, all BeanPost Processor s are registered in a sorted

31 Reference Documentation 838



Spring Framework

fashion and applied to al further beans in the container. Because AOP auto-proxying is
implemented as a BeanPost Pr ocessor itself, neither BeanPost Pr ocessor s nor the
beans they reference directly are eligible for auto-proxying, and thus do not have aspects
woven into them.

For any such bean, you should see an informational log message: “Bean foo is not eligible for
getting processed by all BeanPostProcessor interfaces (for example: not digible for
auto-proxying)”.

The following examples show how to write, register, and use BeanPost Processors in an
Appl i cati onCont ext .

Example: Hello World, BeanPost Pr ocessor -style

This first example illustrates basic usage. The example shows a custom BeanPost Processor
implementation that invokesthet oSt ri ng() method of each bean asit is created by the container and
prints the resulting string to the system console.

Find below the custom BeanPost Pr ocessor implementation class definition:

package scripting;

i mport org.springframework. beans. factory. confi g. BeanPost Processor ;
i mport org.springframework. beans. BeansExcepti on;

public class InstantiationTraci ngBeanPost Processor i npl enents BeanPost Processor {

/1 simply return the instantiated bean as-is
public Object postProcessBeforelnitialization(Object bean, String beanNane)
t hrows BeansException {
return bean; // we could potentially return any object reference here...

}

public Object postProcessAfterlnitialization(Object bean, String beanNane)
throws BeansException {
Systemout.printin("Bean '" + beanNane + "' created : " + bean.toString());
return bean;

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: | ang="htt p://ww. spri ngfranewor k. or g/ schema/ | ang"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. spri ngfranewor k. org/ schema/ | ang
http://ww. springframework. org/ schema/ | ang/ spri ng-1| ang- 3. 0. xsd" >

<l ang: groovy i d="messenger"
script-source="cl asspat h: or g/ spri ngf ramewor k/ scri pti ng/ gr oovy/ Messenger . gr oovy" >
<l ang: property nanme="nessage" val ue="Fiona Apple |Is Just So Dreany."/>
</ | ang: gr oovy>

<l--
when the above bean (nessenger) is instantiated, this custom

31 Reference Documentation 89



Spring Framework

BeanPost Processor inplenmentation will output the fact to the system consol e
-->
<bean cl ass="scripting.|nstantiati onTraci ngBeanPost Processor"/>

</ beans>

Notice how the I nstanti ati onTraci ngBeanPost Processor is simply defined. It does not
even have a name, and because it is a bean it can be dependency-injected just like any other bean. (The
preceding configuration also defines a bean that is backed by a Groovy script. The Spring 2.0 dynamic
language support is detailed in the chapter entitled Chapter 27, Dynamic language support.)

The following simple Java application executes the preceding code and configuration:

i mport org.springfranmework. cont ext. Appl i cati onCont ext ;
i nport org.springfranmework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
i mport org.springfranmework. scripting. Messenger

public final class Boot {

public static void main(final String[] args) throws Exception {
Appl i cationContext ctx = new C assPat hXnl Appli cati onCont ext ("scripting/beans.xm ");
Messenger nessenger = (Messenger) ctx.getBean("nmessenger");
System out . printl n(messenger);

The output of the preceding application resembles the following:

Bean ' nessenger' created : org.springframework.scripting.groovy. GoovyMessenger @72961
org. springframework. scripting. groovy. GoovyMessenger @72961

Example: The Requi r edAnnot at i onBeanPost Pr ocessor

Using calback interfaces or annotations in conjunction with a custom BeanPost Processor
implementation is a common means of extending the Spring 10C container. An example is Spring's
Requi r edAnnot at i onBeanPost Processor — a BeanPost Processor implementation that
ships with the Spring distribution which ensures that JavaBean properties on beans that are marked with
an (arbitrary) annotation are actually (configured to be) dependency-injected with a value.

Customizing configuration metadata with a
BeanFact or yPost Processor

The next extension point that we will look at is the
or g. spri ngframewor k. beans. fact ory. confi g. BeanFact or yPost Processor. The
semantics of thisinterface are similar to those of the BeanPost Pr ocessor , with one major difference:
BeanFact or yPost Pr ocessor s operate on the bean configuration metadata; that is, the Spring 10C
container allows BeanFact or yPost Processor s to read the configuration metadata and potentially
change it before the container instantiates any beans other than BeanFact or yPost Processors.

Y ou can configure multiple BeanFact or yPost Pr ocessor s, and you can control the order in which
these BeanFact or yPost Processor s execute by setting the or der property. However, you can

31 Reference Documentation 90



Spring Framework

only set this property if the BeanFact or yPost Processor implements the Or der ed interface. If
you write your own BeanFact or yPost Processor, you should consider implementing the
Or der ed interface too. Consult the Javadoc for the BeanFact or yPost Pr ocessor and Or der ed
interfaces for more details.

Note

If you want to change the actual bean instances (i.e., the objects that are created from the
configuration metadata), then you instead need to use a BeanPost Pr ocessor (described
above in the section called “Customizing beans using a BeanPostProcessor”). While it is
technically possible to work with bean instances within a BeanFact or yPost Pr ocessor
(e.g., using BeanFact ory. get Bean()), doing so causes premature bean instantiation,
violating the standard container lifecycle. This may cause negative side effects such as
bypassing bean post processing.

Also, BeanFact or yPost Processor s are scoped per-container. Thisis only relevant if
you are using container hierarchies. If you define a BeanFact or yPost Pr ocessor in
one container, it will only be applied to the bean definitionsin that container. Bean definitions
in one container will not be post-processed by BeanFact or yPost Processors in
another container, even if both containers are part of the same hierarchy.

A bean factory post-processor is executed automatically when it is declared inside an
Appl i cati onCont ext, in order to apply changes to the configuration metadata that define the
container. Spring includes a number of predefined bean factory post-processors, such as
PropertyQOverrideConfigurer and PropertyPl acehol derConfigurer. A custom
BeanFact or yPost Processor can aso be used, for example, to register custom property editors.

An Appl i cati onCont ext automatically detects any beans that are deployed into it that implement
the BeanFact or yPost Processor interface. It uses these beans as bean factory post-processors, at
the appropriate time. Y ou can deploy these post-processor beans as you would any other bean.

Note

As with BeanPost Processors, you typicaly do not want to configure
BeanFact or yPost Processor s for lazy initidization. If no other bean references a
Bean( Fact or y) Post Processor, that post-processor will not get instantiated at all.
Thus, marking it for lazy initidlization will be ignored, and the
Bean( Fact ory) Post Processor will be instantiated eagerly even if you set the
defaul t-1azy-init attributetot r ue onthe declaration of your <beans /> element.

Example: the Pr opert yPl acehol der Confi gur er

You use the PropertyPl acehol der Confi gurer to externalize property values from a bean
definition in a separate file using the standard Java Pr oper ti es format. Doing so enables the person
deploying an application to customize environment-specific properties such as database URLs and

31 Reference Documentation 91



Spring Framework

passwords, without the complexity or risk of modifying the main XML definition file or files for the
container.

Consider the following XML-based configuration metadata fragment, where a Dat aSour ce with
placeholder values is defined. The example shows properties configured from an external Pr operti es
file. At runtime, aPr opert yPl acehol der Confi gur er is applied to the metadata that will replace
some properties of the DataSource. The values to replace are specified as placeholders of the form
¥ property-name} which followsthe Ant / logdj / ISP EL style.

<bean cl ass="org. spri ngframewor k. beans. fact ory. confi g. PropertyPl acehol der Confi gurer" >
<property nanme="| ocati ons" val ue="cl asspat h: con f oo/ j dbc. properti es"/>
</ bean>

<bean i d="dat aSour ce" destroy-nmethod="cl ose"
cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" >
<property name="driverC assNanme" val ue="${j dbc. dri ver  assNane}"/ >
<property name="url" val ue="${jdbc.url}"/>
<property name="usernanme" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>

The actual values come from another file in the standard Java Pr oper ti es format:

jdbc. dri verd assNane=or g. hsql db. j dbcDri ver
jdbc. url =jdbc: hsqgl db: hsql : // producti on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

Therefore, the string ${j dbc. user nane} is replaced at runtime with the value 'sa, and the same
applies for other placeholder values that match keys in the properties file The
Pr opert yPl acehol der Confi gur er checks for placeholders in most properties and attributes of a
bean definition. Furthermore, the placeholder prefix and suffix can be customized.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property placeholders
with a dedicated configuration element. One or more locations can be provided as a commarseparated list
inthel ocat i on attribute.

<cont ext: property-pl acehol der | ocation="cl asspath: com foo/j dbc. properties"/>

The Pr opert yPl acehol der Conf i gur er not only looks for properties in the Properti es file
you specify. By default it also checks against the Java Syst emproperties if it cannot find a property in
the specified properties filess You can customize this behavior by setting the
syst enProperti esMode property of the configurer with one of the following three supported integer
values:

» never (0): Never check system properties

+ fallback (1): Check system properties if not resolvable in the specified properties files. This is the
defauilt.

» override (2): Check system properties first, before trying the specified properties files. This alows

31 Reference Documentation 92



Spring Framework

system properties to override any other property source.

Consult the Javadoc for the Pr oper t yPl acehol der Conf i gur er for more information.

Class name substitution

You can use the Pr oper t yPl acehol der Confi gur er to substitute class names, which
is sometimes useful when you have to pick a particular implementation class at runtime. For
example:

<bean cl ass="org. spri ngframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer" >
<property name="| ocati ons">
<val ue>cl asspat h: cont f oo/ strat egy. properties</val ue>
</ property>
<property name="properties">
<val ue>cust om strategy. cl ass=com f 0o. Def aul t St r at egy</ val ue>
</ property>
</ bean>

<bean id="serviceStrategy" class="${custom strategy.class}"/>

If the class cannot be resolved at runtime to a valid class, resolution of the bean fails when it
is about to be created, which is during the pr el nst ant i at eSi ngl et ons() phase of an
Appl i cat i onCont ext for anon-lazy-init bean.

Example: the PropertyOverri deConfi gurer

The PropertyOverrideConfigurer, another bean factory post-processor, resembles the
Pr opert yPl acehol der Confi gur er, but unlike the latter, the origina definitions can have default
values or no values at al for bean properties. If an overriding Pr oper ti es file does not have an entry
for a certain bean property, the default context definition is used.

Note that the bean definition is not aware of being overridden, so it is not immediately obvious from the
XML definition file that the override configurer is being used. In case of multiple
PropertyOQOverri deConfi gurer instances that define different values for the same bean property,
the last one wins, due to the overriding mechanism.

Properties file configuration lines take this format:

beanNane. property=val ue

For example:

dat aSour ce. dri ver Cl assNanme=com nysql . j dbc. Dri ver
dat aSour ce. ur | =j dbc: nysql : mydb

This example file can be used with a container definition that contains a bean called dataSource, which
has driver and url properties.

31 Reference Documentation 93



Spring Framework

Compound property names are also supported, as long as every component of the path except the final
property being overridden is already non-null (presumably initialized by the constructors). In this
example...

f oo. fred. bob. sanmy=123

... the sanmy property of the bob property of the f r ed property of the f oo bean is set to the scalar
value123.

Note

Specified override values are always literal values, they are not translated into bean
references. This convention also applies when the original value in the XML bean definition
specifies a bean reference.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property overriding
with a dedicated configuration element:

<context:property-override | ocation="cl asspath: override. properties"/>

Customizing instantiation logic with a Fact or yBean

Implement the or g. spri ngframewor k. beans. fact ory. Fact or yBean interface for objects
that are themselves factories.

The Fact or yBean interface is apoint of pluggability into the Spring 10C container's instantiation logic.
If you have complex initidization code that is better expressed in Java as opposed to a (potentialy)
verbose amount of XML, you can create your own Fact or yBean, write the complex initialization
inside that class, and then plug your custom Fact or yBean into the container.

The Fact or yBean interface provides three methods:

« (hj ect getObject(): returns an instance of the object this factory creates. The instance can
possibly be shared, depending on whether this factory returns singletons or prototypes.

* boolean isSingleton(): returns true if this Fact or yBean returns singletons, f al se
otherwise.

 Class get bj ect Type() : returns the object type returned by the get Cbj ect () method or
nul | if the typeis not known in advance.

The Fact or yBean concept and interface is used in a number of places within the Spring Framework;
more than 50 implementations of the Fact or yBean interface ship with Spring itself.

When you need to ask a container for an actual Fact or yBean instance itself instead of the bean it

31 Reference Documentation 94



Spring Framework

produces, preface the bean's id with the ampersand symbol (&) when calling the get Bean() method of
the Appl i cati onContext. So for a given Fact oryBean with an id of nyBean, invoking
get Bean( " nyBean") on the container returns the product of the Fact or yBean; whereas, invoking
get Bean( " &ryBean") returnsthe Fact or yBean instanceitself.

4.9 Annotation-based container configuration

Are annotations better than XML for configuring Spring?

The introduction of annotation-based configurations raised the question of whether this approach is
‘better' than XML. The short answer is it depends. The long answer is that each approach has its
pros and cons, and usually it is up to the developer to decide which strategy suits her better. Due to
the way they are defined, annotations provide alot of context in their declaration, leading to shorter
and more concise configuration. However, XML excels at wiring up components without touching
their source code or recompiling them. Some developers prefer having the wiring close to the
source while others argue that annotated classes are no longer POJOs and, furthermore, that the
configuration becomes decentralized and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together. It's worth
pointing out that through its JavaConfig option, Spring alows annotations to be used in a
non-invasive way, without touching the target components source code and that in terms of tooling,
al configuration styles are supported by the SpringSource Tool Suite.

An alternative to XML setups is provided by annotation-based configuration which rely on the bytecode
metadata for wiring up components instead of angle-bracket declarations. Instead of using XML to
describe a bean wiring, the developer moves the configuration into the component class itself by using
annotations on the relevant class, method, or field declaration. As mentioned in the section caled
“Example: The RequiredAnnotationBeanPostProcessor”, using aBeanPost Pr ocessor in conjunction
with annotations is a common means of extending the Spring 10C container. For example, Spring 2.0
introduced the possibility of enforcing required properties with the @Required annotation. Spring 2.5
made it possible to follow that same genera approach to drive Spring's dependency injection. Essentidlly,
the @\ut owi r ed annotation provides the same capabilities as described in the section called
“Autowiring collaborators’ but with more fine-grained control and wider applicability. Spring 2.5 also
added support for JSR-250 annotations such as @Post Const ruct, and @'r eDest r oy. Spring 3.0
added support for JSR-330 (Dependency Injection for Java) annotations contained in the javax.inject
package such as @ nj ect and @Naned. Details about those annotations can be found in the relevant
section.

Note

Annotation injection is performed before XML injection, thus the latter configuration will
override the former for properties wired through both approaches.

As aways, you can register them as individual bean definitions, but they can also be implicitly registered

31 Reference Documentation 95


http://www.springsource.com/products/sts

Spring Framework

by including the following tag in an XML-based Spring configuration (notice the inclusion of the
cont ext namespace):

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="htt p: //ww. spri ngfranewor k. or g/ schenma/ cont ext "
xsi : schemalLocati on="http://ww. spri ngfranmework. or g/ schema/ beans
http://ww. springframework. or g/ scherma/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. springfranmework. or g/ schema/ cont ext/spri ng-cont ext -3. 0. xsd">

<cont ext : annot ati on-confi g/ >

</ beans>

(The implicitly registered post-processors include Aut owi r edAnnot at i onBeanPost Pr ocessor,
CommonAnnot at i onBeanPost Pr ocessor,

Per si st enceAnnot at i onBeanPost Processor, as  wdl as the  aforementioned
Requi r edAnnot at i onBeanPost Processor .)

Note

<cont ext : annot ati on- confi g/ > only looks for annotations on beans in the same
application context in which it is defined. This means that, if you put
<context:annotation-config/> in a WbApplicationContext for a
Di spat cher Ser vl et , it only checks for @Aut owi r ed beansin your controllers, and not
your services. See Section 16.2, “ The DispatcherServlet” for more information.

@Requi red

The @Requi r ed annotation applies to bean property setter methods, as in the following example:

public class SinpleMvielLister {
private MovieFi nder novi eFi nder;

@Requi red

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;

}

...

This annotation simply indicates that the affected bean property must be populated at configuration time,
through an explicit property value in a bean definition or through autowiring. The container throws an
exception if the affected bean property has not been populated; this alows for eager and explicit failure,
avoiding Nul | Poi nt er Excepti ons or the like later on. It is ill recommended that you put
assertions into the bean class itself, for example, into an init method. Doing so enforces those required
references and values even when you use the class outside of a container.

31 Reference Documentation 96


http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/annotation/CommonAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/annotation/RequiredAnnotationBeanPostProcessor.html

Spring Framework

@\ut ow r ed

As expected, you can apply the @\ut owi r ed annotation to "traditional” setter methods:

public class SinpleMuvieLister {
private MovieFi nder novi eFi nder;
@\ut owi r ed

public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder;

}
11

Note

JSR 330's @Inject annotation can be used in place of Spring's @\ut owi r ed annotation in
the examples below. See here for more details

Y ou can also apply the annotation to methods with arbitrary names and/or multiple arguments:

public class Myvi eRecommender {
private MovieCatal og novi eCat al og;
private CustonerPreferenceDao custoner PreferenceDao;
@\ut owi red
public void prepare(MyvieCatal og novi eCat al og,
Cust omer Pr ef erenceDao cust orer Pr ef er enceDao) {

thi s. movi eCat al og = novi eCat al og;
t hi s. cust oner Pref erenceDao = cust oner Pref er enceDao;

/'l

Y ou can apply @Aut owi r ed to constructors and fields:

public class Myvi eRecommender {

@\ut owi r ed
private MovieCatal og novi eCat al og;

private CustonerPreferenceDao custoner PreferenceDao;
@\ut owi red

publ i ¢ Movi eRecommender ( Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {
t his. cust oner Pref erencebDao = cust oner Pref er enceDao;

}
11

It is also possible to provide all beans of a particular type from the Appl i cat i onCont ext by adding

31 Reference Documentation 97



Spring Framework

the annotation to afield or method that expects an array of that type:

public class Myvi eRecormender {

@\ut owi r ed
private MovieCatal og[] novi eCat al ogs;

1. ..
}

The same applies for typed collections:

public class Myvi eRecormender {
private Set<Mpvi eCatal og> novi eCat al ogs;
@\ut owi r ed

public void set Mvi eCat al ogs( Set <Mbvi eCat al og> novi eCat al ogs) {
t hi s. movi eCat al ogs = novi eCat al ogs;
}

...

Even typed Maps can be autowired as long as the expected key type is St ri ng. The Map values will
contain all beans of the expected type, and the keys will contain the corresponding bean names:
public class Myvi eReconmender {
private Map<String, MvieCatal og> novi eCat al ogs;
@\ut owi red
public void setMvieCatal ogs(Map<String, MovieCatal og> novi eCat al ogs) {

t hi s. movi eCat al ogs = novi eCat al ogs;

}
1. ..

By default, the autowiring fails whenever zero candidate beans are available; the default behavior is to
treat annotated methods, constructors, and fields as indicating required dependencies. This behavior can
be changed as demonstrated below.
public class SinpleMvieLister {
private MovieFi nder novi eFi nder;
@\ut owi red(required=fal se)

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. nmovi eFi nder = novi eFi nder;
}

...

Note

Only one annotated constructor per-class can be marked as required, but multiple
non-required constructors can be annotated. In that case, each is considered among the

31 Reference Documentation 98



Spring Framework

candidates and Spring uses the greediest constructor whose dependencies can be satisfied,
that is the constructor that has the largest number of arguments.

@A\ut owi r ed's required attribute is recommended over the @Requi r ed annotation. The
required attribute indicates that the property is not required for autowiring purposes, the
property is ignored if it cannot be autowired. @Requi r ed, on the other hand, is stronger in
that it enforces the property that was set by any means supported by the container. If no value
isinjected, a corresponding exception is raised.

You can aso use @\utow red for interfaces that are well-known resolvable dependencies:
BeanFact ory, Appl i cati onCont ext, Envi ronnent , Resour celLoader,
Appl i cati onEvent Publ i sher, and MessageSour ce. These interfaces and their extended
interfaces, such as Conf i gur abl eAppl i cati onCont ext or Resour cePat t er nResol ver, are
automatically resolved, with no special setup necessary.

public class Myvi eReconmender {

@\ut owi r ed
private ApplicationContext context;

publ i c Movi eRecommender () {

}
1. ..

Note

@\t owi r ed, @ nj ect, @Resour ce, and @/al ue annotations are handled by a Spring
BeanPost Processor implementations which in turn means that you cannot apply these
annotations within your own BeanPost Pr ocessor or
BeanFact or yPost Pr ocessor types (if any). These types must be 'wired up' explicitly
viaXML or using a Spring @ean method.

Fine-tuning annotation-based autowiring with qualifiers

Because autowiring by type may lead to multiple candidates, it is often necessary to have more control
over the selection process. One way to accomplish this is with Spring's @ual i fi er annotation. You
can associate qualifier values with specific arguments, narrowing the set of type matches so that a specific
bean is chosen for each argument. In the simplest case, this can be a plain descriptive value:

public class Myvi eRecormender {

@\ut owi r ed
@ualifier("min")
private MovieCatal og novi eCat al og;

...
}

31 Reference Documentation 99



Spring Framework

The @ual i fi er annotation can aso be specified on individual constructor arguments or method
parameters:

public class Myvi eRecommender {
private MovieCatal og novi eCat al og;
private CustonerPreferenceDao custoner PreferenceDao;

@\ut owi r ed
public void prepare(@ualifier("min") MyvieCatal og novi eCat al og,
Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {
thi s. movi eCat al og = novi eCat al og;
this. custonerPreferenceDao = cust oner Pref er enceDao;

/1

The corresponding bean definitions appear as follows. The bean with qualifier value "main" is wired with
the constructor argument that is qualified with the same value.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p://ww. spri ngfranewor k. or g/ schenma/ cont ext "
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springfranmewor k. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext - 3. 0. xsd" >

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMbvi eCat al og" >

<qual i fier val ue="main"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<qual i fier value="action"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eRecommender" cl ass="exanpl e. Movi eReconmrender "/ >

</ beans>

For afallback match, the bean name is considered a default qualifier value. Thus you can define the bean
with an id "main" instead of the nested qualifier element, leading to the same matching result. However,
although you can use this convention to refer to specific beans by name, @A\ut owi r ed is fundamentally
about type-driven injection with optional semantic qualifiers. This means that qualifier values, even with
the bean name fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values are "main” or "EMEA" or
"persistent”, expressing characteristics of a specific component that are independent from the bean id,
which may be auto-generated in case of an anonymous bean definition like the one in the preceding
example.

Qualifiers also apply to typed collections, as discussed above, for example, to Set <Movi eCat al 0g>.

31 Reference Documentation 100



Spring Framework

In this case, al matching beans according to the declared qualifiers are injected as a collection. This
implies that qualifiers do not have to be unique; they rather simply constitute filtering criteria. For
example, you can define multiple Movi eCat al og beans with the same qualifier value "action”; all of
which would be injected into a Set <Movi eCat al og> annotated with @ual i fi er("action").

Tip

If you intend to express annotation-driven injection by name, do not primarily use
@\ut owi r ed, even if is technically capable of referring to a bean name through
@ualifier vaues Instead, use the JSR-250 @Resour ce annotation, which is
semantically defined to identify a specific target component by its unique name, with the
declared type being irrelevant for the matching process.

As a specific consequence of this semantic difference, beans that are themselves defined as a
collection or map type cannot be injected through @Aut owi r ed, because type matching is
not properly applicable to them. Use @Resour ce for such beans, referring to the specific
collection or map bean by unigue name.

@\ut owi r ed applies to fields, constructors, and multi-argument methods, allowing for
narrowing through qualifier annotations at the parameter level. By contrast, @Resour ce is
supported only for fields and bean property setter methods with a single argument. As a
consequence, stick with qualifiersif your injection target is a constructor or a multi-argument
method.

You can create your own custom qualifier annotations. Simply define an annotation and provide the
@ual i fi er annotation within your definition:

@ar get ({ El enent Type. Fl ELD, El ement Type. PARAVETER})
@ret ent i on(Ret enti onPol i cy. RUNTI MVE)

@ualifier

public @nterface Genre {

}

String val ue();

Then you can provide the custom qualifier on autowired fields and parameters:

public class Myvi eRecommender {

@\ut owi r ed
@zenre("Action")
private MvieCatal og acti onCat al og;

private MovieCatal og conedyCat al og;

@\ut owi red
public voi d set ConedyCat al og( @nre(" Conmedy") Movi eCat al og conmedyCat al og) {

}

...

t hi s. conedyCat al og = conedyCat al og;

31

Reference Documentation 101



Spring Framework

Next, provide the information for the candidate bean definitions. You can add <qual i fi er/ > tags as
sub-elements of the <bean/ > tag and then specify thet ype and val ue to match your custom qualifier
annotations. The type is matched against the fully-qualified class name of the annotation. Or, as a
convenience if no risk of conflicting names exists, you can use the short class name. Both approaches are
demonstrated in the following example.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://wwmv springfranmewor k. or g/ schema/ cont ext "
xsi:schemaLocati on="http://wwm. spri ngframework. or g/ schema/ beans
http://ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springfranmewor k. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext - 3. 0. xsd" >

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMbvi eCat al og" >

<qual i fier type="Genre" val ue="Action"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qual i fier type="exanple. Genre" val ue="Conedy"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eRecomrender" cl ass="exanpl e. Movi eReconmrender" />

</ beans>

In Section 4.10, “Classpath scanning and managed components’, you will see an annotation-based
aternative to providing the qualifier metadata in XML. Specificaly, see the section called “Providing
qualifier metadata with annotations’.

In some cases, it may be sufficient to use an annotation without a value. This may be useful when the
annotation serves a more generic purpose and can be applied across several different types of
dependencies. For example, you may provide an offline catalog that would be searched when no Internet
connection is available. First define the simple annotation:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@ret ent i on( Ret enti onPol i cy. RUNTI MVE)

@ualifier
public @nterface Ofline {
}

Then add the annotation to the field or property to be autowired:

public class Myvi eRecormender {
@\ut owi r ed
@fline
private MovieCatal og of flineCatal og

/1

3.1 Reference Documentation 102



Spring Framework

Now the bean definition only needs a qualifier t ype:

<bean cl ass="exanpl e. Si npl eMbvi eCat al og" >

<qualifier type="Ofline"/>

<I-- inject any dependencies required by this bean -->
</ bean>

You can also define custom qualifier annotations that accept named attributes in addition to or instead of
the simple val ue attribute. If multiple attribute values are then specified on a field or parameter to be
autowired, a bean definition must match all such attribute values to be considered an autowire candidate.
As an example, consider the following annotation definition:

@ar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret enti onPol i cy. RUNTI MVE)

@ualifier
public @nterface MvieQualifier {

String genre();

Format format ();

}

In this case For mat isan enum:

public enum Format {

VHS, DVD, BLURAY
}

The fields to be autowired are annotated with the custom qualifier and include values for both attributes:
genre andf or mat .

public class Myvi eRecormender {

@\ut owi r ed
@mbvi eQual i fier(format=Format.VHS, genre="Action")
private MovieCatal og actionVhsCat al og;

@\ut owi r ed
@bvi eQual i fier(format=Format.VHS, genre="Conedy")
private MovieCatal og conedyVhsCat al og;

@\ut owi red
@bvi eQual i fier(format=Format.DVD, genre="Action")
private MovieCatal og acti onDvdCat al og;

@\ut owi red
@nbvi eQual i fier(format=For mat. BLURAY, genre="Conedy")
private MovieCatal og conedyBl uRayCat al og;

...

Finally, the bean definitions should contain matching qualifier values. This example also demonstrates
that bean meta attributes may be used instead of the <qual i fi er/ > sub-elements. If available, the
<qual i fier/> and its attributes take precedence, but the autowiring mechanism falls back on the
values provided within the <met a/ > tags if no such quaifier is present, as in the last two bean

31 Reference Documentation 103



Spring Framework

definitions in the following example.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: cont ext ="htt p://ww. spri ngfranmewor k. or g/ schena/ cont ext "
xsi : schemaLocati on="htt p: //ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans- 3. 0. xsd

http://ww. springframework. or g/ schema/ cont ext

http: // ww. spri ngfranewor k. or g/ schema/ cont ext/ spri ng- cont ext - 3. 0. xsd" >

<cont ext : annot ati on-confi g/ >

<bean cl ass="exanpl e. Si npl eMbvi eCat al og" >
<qualifier type="MovieQualifier">
<attribute key="format" val ue="VHS"'/>
<attribute key="genre" val ue="Action"/>
</qualifier>
<!-- inject any dependencies required by this bean
</ bean>

<bean cl ass="exanpl e. Si npl eMbvi eCat al 0og" >
<qual i fier type="MovieQualifier">
<attribute key="format" val ue="VHS"'/>
<attribute key="genre" val ue="Conedy"/>
</qualifier>
<l-- inject any dependencies required by this bean
</ bean>

<bean cl ass="exanpl e. Si npl eMbvi eCat al 0og" >

<nmeta key="format" val ue="DVD'/>

<nmeta key="genre" val ue="Action"/>

<l-- inject any dependencies required by this bean
</ bean>

<bean cl ass="exanpl e. Si npl eMbvi eCat al og" >

<nmeta key="format" val ue="BLURAY"/>

<neta key="genre" val ue="Conedy"/>

<l-- inject any dependencies required by this bean
</ bean>

</ beans>

Cust omAut owi r eConfi gurer

The Cust omAut owi r eConfi gurer is a BeanFact or yPost Processor that enables you to
register your own custom qualifier annotation types even if they are not annotated with Spring's
@ual i fi er annotation.

<bean i d="cust omAut owi r eConfi gurer"
cl ass="org. spri ngframewor k. beans. f act ory. annot at i on. Cust omAut owi r eConf i gurer" >

<property name="customQualifierTypes">
<set >
<val ue>exanpl e. Cust omQual i fi er </ val ue>
</ set >
</ property>

</ bean>

The particular implementation of Aut ow r eCandi dat eResol ver

that

is activated for the

application context depends on the Java version. In versions earlier than Java 5, the qualifier annotations

31

Reference Documentation

104


http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/annotation/CustomAutowireConfigurer.html

Spring Framework

are not supported, and therefore autowire candidates are solely determined by the
autowi re-candidate vaue of each bean definition as wel as by any
def aul t - aut owi r e- candi dat es pattern(s) available on the <beans/ > element. In Java 5 or
later, the presence of @ual ifier annotations and any custom annotations registered with the
Cust omAut owi r eConf i gur er will also play arole.

Regardless of the Java version, when multiple beans qualify as autowire candidates, the determination of
a"primary" candidate is the same: if exactly one bean definition among the candidates has a pri mary
attribute set to t r ue, it will be selected.

@Resour ce

Spring also supports injection using the JSR-250 @Resour ce annotation on fields or bean property
setter methods. This is a common pattern in Java EE 5 and 6, for example in JSF 1.2 managed beans or
JAX-WS 2.0 endpoints. Spring supports this pattern for Spring-managed objects as well.

@Resour ce takes a name attribute, and by default Spring interprets that value as the bean name to be
injected. In other words, it follows by-name semantics, as demonstrated in this example:

public class SinpleMvielLister {
private MovieFi nder novi eFi nder;

@Resour ce( nane="nyMvi eFi nder")
public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. nmovi eFi nder = novi eFi nder;

}
}

If no name is specified explicitly, the default name is derived from the field name or setter method. In
case of afield, it takes the field name; in case of a setter method, it takes the bean property name. So the
following exampleis going to have the bean with name "movieFinder" injected into its setter method:

public class SinpleMyvieLister {
private MovieFi nder novi eFi nder;

@Rresour ce
public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;

}
}

Note

The name provided with the annotation is resolved as a bean name by the
Appl i cat i onCont ext of which the ConmonAnnot ati onBeanPost Processor is
aware. The names can be resolved through JNDI if you configure Spring's
Si npl eJndi BeanFact ory explicitly. However, it is recommended that you rely on the
default behavior and simply use Spring's INDI lookup capabilities to preserve the level of
indirection.

31 Reference Documentation 105


http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/jndi/support/SimpleJndiBeanFactory.html

Spring Framework

In the exclusive case of @Resource usage with no explicit name specified, and similar to
@\ut owi r ed, @Resour ce finds a primary type match instead of a specific named bean and resolves
well-known  resolvable dependencies. the BeanFactory, Appl i cati onCont ext,
Resour ceLoader, Appli cati onEvent Publi sher,and MessageSour ce interfaces.

Thus in the following example, the cust oner Pr ef er enceDao field first looks for a bean named
customerPreferenceDao, then falls back to a primary type mach for the type
Cust orrer Pr ef er enceDao. The "context” field is injected based on the known resolvable
dependency type Appl i cat i onCont ext .

public class Myvi eReconmender {

@Resour ce
private CustonerPreferenceDao custoner PreferenceDao;

@Rresour ce
private ApplicationContext context;

publ i ¢ Movi eRecommender () {
}

...

@ost Construct and @r eDestr oy

The ConmonAnnot at i onBeanPost Processor not only recognizes the @Resour ce annotation
but also the JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support for these annotations
offers yet another alternative to those described in initialization callbacks and destruction callbacks.
Provided that the CommonAnnot at i onBeanPost Processor is registered within the Spring
Appl i cat i onCont ext , amethod carrying one of these annotations is invoked at the same paint in the
lifecycle as the corresponding Spring lifecycle interface method or explicitly declared callback method. In
the example below, the cache will be pre-populated upon initialization and cleared upon destruction.

public class Cachi ngMvi eLister {

@ost Const ruct
public void popul at eMdovi eCache() {
/| popul ates the novie cache upon initialization...

}

@r eDest r oy
public void clearMyvieCache() {

/'l clears the novie cache upon destruction...
}

}

Note

For details about the effects of combining various lifecycle mechanisms, see the section
called “ Combining lifecycle mechanisms’.

31 Reference Documentation 106



Spring Framework

4.10 Classpath scanning and managed components

Most examples in this chapter use XML to specify the configuration metadata that produces each
BeanDef i ni ti on within the Spring container. The previous section (Section 4.9, “ Annotation-based
container configuration”) demonstrates how to provide a lot of the configuration metadata through
source-level annotations. Even in those examples, however, the "base" bean definitions are explicitly
defined in the XML file, while the annotations only drive the dependency injection. This section describes
an option for implicitly detecting the candidate components by scanning the classpath. Candidate
components are classes that match against a filter criteria and have a corresponding bean definition
registered with the container. This removes the need to use XML to perform bean registration, instead
you can use annotations (for example @Component), Aspect] type expressions, or your own custom filter
criteriato select which classes will have bean definitions registered with the container.

Note

Starting with Spring 3.0, many features provided by the Spring JavaConfig project are part of
the core Spring Framework. This allows you to define beans using Java rather than using the
traditional XML files. Take a look at the @Confi gurati on, @ean, @ nport, and
@ependsOn annotations for examples of how to use these new features.

@onponent and further stereotype annotations

In Spring 2.0 and later, the @Reposi t ory annotation is a marker for any class that fulfills the role or
stereotype (also known as Data Access Object or DAO) of arepository. Among the uses of this marker is
the automatic tranglation of exceptions as described in the section called “Exception trandation”.

Spring 2.5 introduces further stereotype annotations: @Conponent , @er vi ce, and @ontrol | er.
@Conponent isageneric stereotype for any Spring-managed component. @Reposi t ory, @er vi ce,
and @ontrol | er are speciaizations of @onponent for more specific use cases, for example, in the
persistence, service, and presentation layers, respectively. Therefore, you can annotate your component
classes with @onponent, but by annotating them with @Repository, @ervice, or
@cont r ol | er instead, your classes are more properly suited for processing by tools or associating with
aspects. For example, these stereotype annotations make ideal targets for pointcuts. It is also possible that
@Repository, @ervice, and @ontrol | er may carry additional semantics in future releases of
the Spring Framework. Thus, if you are choosing between using @Conponent or @er vi ce for your
service layer, @Ber vi ce is clearly the better choice. Similarly, as stated above, @Repository is
aready supported as a marker for automatic exception translation in your persistence layer.

Automatically detecting classes and registering bean definitions

Spring can automatically detect stereotyped classes and register corresponding BeanDef i ni t i onswith
the ApplicationContext. For example, the following two classes are eligible for such

3.1 Reference Documentation 107


http://www.springsource.org/javaconfig

Spring Framework

autodetection:

@ser vi ce
public class SinpleMvieLister {

private MvieFi nder novi eFi nder;

@\ut owi r ed
publ i c Si mpl eMovi eLi st er (Movi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;

}
}

@Reposi tory
public class JpaMvi eFi nder inplenents MvieFi nder {
/1 inmplenentation elided for clarity

}

To autodetect these classes and register the corresponding beans, you need to include the following
element in XML, where the base-package element is a common parent package for the two classes.
(Alternatively, you can specify a comma-separated list that includes the parent package of each class.)

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p: //ww. spri ngfranewor k. or g/ schena/ cont ext "
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. spri ngfranmewor k. or g/ schema/ cont ext/ spri ng-cont ext - 3. 0. xsd" >

<cont ext : conponent - scan base- package="org. exanpl e"/ >

</ beans>

Note

The scanning of classpath packages requires the presence of corresponding directory entries
in the classpath. When you build JARs with Ant, make sure that you do not activate the
files-only switch of the JAR task.

Furthermore, the Aut owi r edAnnot at i onBeanPost Pr ocessor and
CommonAnnot at i onBeanPost Processor are both included implicitty when you use the
component-scan element. That means that the two components are autodetected and wired together - all
without any bean configuration metadata provided in XML.

Note

Y ou can disable the registration of Aut owi r edAnnot at i onBeanPost Pr ocessor and
CommonAnnot at i onBeanPost Pr ocessor by including the annotation-config attribute
with avalue of false.

31 Reference Documentation 108



Spring Framework

Using filters to customize scanning

By default, classes annotated with @onponent , @Reposi tory, @ervi ce, @ontrol l er, or a
custom annotation that itself is annotated with @Conponent are the only detected candidate
components. However, you can modify and extend this behavior simply by applying custom filters. Add
them as include-filter or exclude-filter sub-elements of the conponent - scan element. Each filter
element requires the t ype and expr essi on attributes. The following table describes the filtering

options.

Table 4.5. Filter Types

Filter Example Expression Description

Type

annotation | or g. exanpl e. SomeAnnot at i on An annotation to be present at the type level in
target components.

assignable | or g. exanpl e. Soned ass A class (or interface) that the target components
are assignable to (extend/implement).

aspectj org. exanpl e. . *Servi ce+ An Aspect] type expression to be matched by the
target components.

regex org\.exanpl e\.Defaul t.* A regex expression to be matched by the target
components class names.

custom org. exanpl e. MyTypeFi | ter A custom implementation of the

org. springframework. core. type
. TypeFi | t er interface.

The following example shows the XML configuration ignoring al @Reposi t or y annotations and using
"stub" repositories instead.

<beans>

<cont ext : conponent - scan base- package="or g. exanpl e" >
<context:include-filter type="regex" expression=".*Stub.*Repository"/>
<cont ext: exclude-filter type="annotation"

expressi on="org. spri ngframewor k. st er eot ype. Reposi tory"/>

</ cont ext : conponent - scan>

</ beans>

Note

Y ou can aso disable the default filters by providing use-default-filters="false" as an attribute
of the <component-scan/> element. This will in effect disable automatic detection of classes

annotated with @Conponent , @Reposi t ory, @er vi ce, or @ontrol | er.

31

Reference Documentation 109



Spring Framework

Defining bean metadata within components

Spring components can also contribute bean definition metadata to the container. You do this with the
same @ean annotation used to define bean metadata within @onf i gur ati on annotated classes.
Hereis asimple example:

@conponent
public class FactoryMet hodConponent {

@ean @ualifier("public")
publ i c TestBean publiclnstance() {

return new Test Bean("publiclnstance");
}

public void dowrk() {
/'l Conponent nethod inplenentation omtted
}

}

This class is a Spring component that has application-specific code contained in its doWr k() method.
However, it aso contributes a bean definition that has a factory method referring to the method
publ i cl nstance(). The @ean annotation identifies the factory method and other bean definition
properties, such as a qualifier value through the @ual i fi er annotation. Other method level
annotations that can be specified are @cope, @azy, and custom qualifier annotations. Autowired
fields and methods are supported as previously discussed, with additional support for autowiring of
@Bean methods:

@conponent
public class FactoryMet hodConponent {

private static int i;

@Bean @ualifier("public")
publ i c TestBean publiclnstance() {

return new TestBean(" publicl nstance");
}

/] use of a custom qualifier and autow ring of nethod paraneters

@ean
protected TestBean protectedl nstance(@ualifier("public") TestBean spouse,
@al ue("#{privatel nstance. age}") String country) {
TestBean tb = new Test Bean("prot ect edl nstance", 1);
tb. set Spouse(tbh);
tb. set Country(country);
return tb;

}

@Bean @cope(BeanDefinition. SCOPE_S|I NGLETON)
private TestBean privatelnstance() {

return new Test Bean("privatel nstance", i++);
}

@ean @cope(val ue = WebAppl i cati onCont ext. SCOPE_SESS| ON,
proxyMbde = ScopedPr oxyMode. TARGET CLASS)
publ i c TestBean request Scopedl nstance() {
return new Test Bean("request Scopedl nst ance", 3);
}

}

3.1 Reference Documentation 110



Spring Framework

The example autowires the St r i ng method parameter count ry to the value of the Age property on
another bean named pri vat el nst ance. A Spring Expression Language element defines the value of
the property through the notation #{ <expressi on> }. For @/al ue annotations, an expression
resolver is preconfigured to look for bean names when resolving expression text.

The @ean methods in a Spring component are processed differently than their counterparts inside a
Spring @onf i gur ati on class. The difference is that @onponent classes are not enhanced with
CGLIB to intercept the invocation of methods and fields. CGLIB proxying is the means by which
invoking methods or fields within @onf i gur ati on classes @ean methods create bean metadata
references to collaborating objects. Methods are not invoked with normal Java semantics. In contrast,
calling amethod or field within a @Conponent classes @ean method has standard Java semantics.

Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name is generated by the
BeanNanmeCener at or strategy known to that scanner. By default, any Spring stereotype annotation
(@onponent , @Reposi tory, @ervi ce, and @ontrol | er) that contains a nanme value will
thereby provide that name to the corresponding bean definition.

If such an annotation contains no nane value or for any other detected component (such as those
discovered by custom filters), the default bean name generator returns the uncapitalized non-qualified
class name. For example, if the following two components were detected, the names would be
myMovieLister and movieFinderimpl:

@er vi ce("nmyMovi eLi ster™)
public class SinpleMvieLister {
1.

}

@reposi tory
public class MvieFinderlnpl inplenents MvieFinder {
...

}

Note

If you do not want to rely on the default bean-naming strategy, you can provide a custom
bean-naming strategy. First, implement the BeanNaneGener at or_interface, and be sure to
include a default no-arg constructor. Then, provide the fully-qualified class name when
configuring the scanner:

<beans>

<cont ext : conponent - scan base- package="or g. exanpl e"
name- gener at or =" or g. exanpl e. MyNaneGenerator" />

</ beans>

3.1 Reference Documentation 111


http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/support/BeanNameGenerator.html

Spring Framework

As a general rule, consider specifying the name with the annotation whenever other components may be
making explicit references to it. On the other hand, the auto-generated names are adequate whenever the
container isresponsible for wiring.

Providing a scope for autodetected components

As with Spring-managed components in general, the default and most common scope for autodetected
components is singleton. However, sometimes you need other scopes, which Spring 2.5 provides with a
new @scope annotation. Simply provide the name of the scope within the annotation:

@scope( " prototype")

@reposi tory

public class MvieFinderlnpl inplenents MvieFinder {
...

}

Note

To provide a custom strategy for scope resolution rather than relying on the annotation-based
approach, implement the ScopeMet adat aResol ver interface, and be sure to include a
default no-arg constructor. Then, provide the fully-qualified class name when configuring the
scanner:

<beans>

<cont ext : conponent - scan base- package="or g. exanpl e"
scope-resol ver ="or g. exanpl e. MyScopeResol ver" />

</ beans>

When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped objects.
The reasoning is described in the section called “ Scoped beans as dependencies’. For this purpose, a
scoped-proxy attribute is available on the component-scan element. The three possible values are: no,
interfaces, and targetClass. For example, the following configuration will result in standard JDK dynamic
proxies:

<beans>

<cont ext : conponent - scan base- package="or g. exanpl e"
scoped- proxy="interfaces" />

</ beans>

Providing qualifier metadata with annotations

The @al i fi er annotation is discussed in the section called “ Fine-tuning annotation-based autowiring
with qualifiers’. The examples in that section demonstrate the use of the @ual i fi er annotation and
custom qualifier annotations to provide fine-grained control when you resolve autowire candidates.

3.1 Reference Documentation 112


http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/annotation/ScopeMetadataResolver.html

Spring Framework

Because those examples were based on XML bean definitions, the qualifier metadata was provided on the
candidate bean definitions using the qual i fi er or met a sub-elements of the bean element in the
XML. When relying upon classpath scanning for autodetection of components, you provide the qualifier
metadata with type-level annotations on the candidate class. The following three examples demonstrate
this technique:

@Conponent

@ualifier("Action")

public class ActionMyvieCatal og i npl enents Myvi eCat al og {
1.

}

@Conponent

@enre("Action")

public class ActionMyvieCatal og i npl enents Mvi eCat al og {
...

}

@Conponent

@xfline

public class Cachi ngMvi eCat al og i npl enents Myvi eCat al og {
...

}

Note

As with most annotation-based alternatives, keep in mind that the annotation metadata is
bound to the class definition itself, while the use of XML allows for multiple beans of the
same type to provide variations in their qualifier metadata, because that metadata is provided
per-instance rather than per-class.

4.11 Using JSR 330 Standard Annotations

Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations (Dependency Injection).
Those annotations are scanned in the same way as the Spring annotations. You just need to have the
relevant jarsin your classpath.

Note

If you are using Maven, the j avax. i nj ect artifact is available in the standard Maven
repository (http://repol.maven.org/maven?/javax/inject/javax.inject/1/). You can add the
following dependency to your file pom.xml:

<dependency>
<groupl d>j avax. i nj ect </ groupl d>
<artifactld> avax.inject</artifactld>
<ver si on>1</ ver si on>

</ dependency>

3.1 Reference Documentation 113


http://repo1.maven.org/maven2/javax/inject/javax.inject/1/

Spring Framework

Dependency Injection with @ nj ect and @Naned

Instead of @Aut owi red, @ avax. i nj ect. | nj ect may beused asfollows:

i mport javax.inject.|nject;
public class SinpleMvieLister {

private MovieFi nder novi eFi nder;

@ nj ect
public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. nmovi eFi nder = novi eFi nder;

}
...

As with @\ut owi r ed, it is possible to use @ nj ect at the class-level, field-level, method-level and
constructor-argument level. If you would like to use a qualified name for the dependency that should be
injected, you should use the @Naned annotation as follows:

i nport javax.inject.|nject;
i mport javax.inject. Naned;

public class SinpleMvielLister {
private MovieFi nder novi eFi nder;
@ nj ect

public void setMvieFi nder (@laned("mai n") Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;

}
...

@\aned: a standard equivalent to the @onponent annotation

Instead of @onponent , @ avax. i nj ect. Naned may be used as follows:

i nport javax.inject.|nject;
i mport javax.inject. Naned;

@ anmed( " novi eLi stener")
public class SinpleMvielLister {

private MovieFi nder novi eFi nder;
@ nj ect
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {

thi s. movi eFi nder = novi eFi nder;
}

...

It is very common to use @onponent without specifying a name for the component. @Naned can be
used in asimilar fashion:

3.1 Reference Documentation 114



Spring Framework

i nport javax.inject.l|nject;
i mport javax.inject.Named

@\aned

public class SinpleMvieLister {

private MvieFi nder novi eFi nder

@ nj ect

public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
thi s. movi eFi nder = novi eFi nder

}
...

When using @Named, it is possible to use component-scanning in the exact same way as when using

Spring annotations:

<beans>

<cont ext : conponent - scan base- package="org. exanpl e"/ >

</ beans>

Limitations of the standard approach

When working with standard annotations, it is important to know that some significant features are not
available as shown in the table below:

Table 4.6. Spring annotations vs. standard annotations

Spring javax.inject.* javax.inject restrictions/ comments

@Autowired @Inject @Inject has no 'required' attribute

@Component @Named —

@Scope("singleton™) @Singleton
The JSR-330 default scope is like Spring's
pr ot ot ype. However, in order to keep it consistent
with Spring's general defaults, a JSR-330 bean
declared in the Spring container is a si ngl et on by
default. In order to use a scope other than
singl eton, you should use Spring's @scope
annotation.
j avax. i nj ect aso provides a @Scope annotation.
Nevertheless, this one is only intended to be used for
creating your own annotations.

@Qualifier @Named —

@Vaue — no equivalent

31 Reference Documentation 115


http://download.oracle.com/javaee/6/api/javax/inject/Scope.html

Spring Framework

Spring javax.inject.* javax.inject restrictions/ comments
@Required — no equivalent
@Lazy — no equivalent

4.12 Java-based container configuration

Basic concepts: @onfi gurati on and @ean

The centra artifact in Spring's new Java-configuration support is the @onf i gur at i on-annotated
class. These classes consist principally of @Bean-annotated methods that define instantiation,
configuration, and initialization logic for objects to be managed by the Spring 10C container.

Annotating a class with the @onf i gur at i on indicates that the class can be used by the Spring 10C
container as a source of bean definitions. The simplest possible @onf i gur at i on class would read as
follows:

@conf i guration
public class AppConfig {

@Bean

public MyService nyService() {
return new MyServicel npl ();

}

}

For those more familiar with Spring <beans/ > XML, the AppConf i g class above would be equivalent
to:

<beans>
<bean id="nyService" class="com acne. services. MyServicel npl"/>
</ beans>

As you can see, the @ean annotation plays the same role as the <bean/ > element. The @ean
annotation will be discussed in depth in the sections below. First, however, we'll cover the various ways
of creating a spring container using Java-based configuration.

Instantiating the Spring container using
Annot ati onConfi gAppl i cati onCont ext

The sections below document Spring's Annot at i onConf i gAppl i cati onCont ext, new in Spring
3.0. This versatile Applicati onContext implementation is capable of accepting not only
@Confi gurati on classes as input, but also plain @onponent classes and classes annotated with
JSR-330 metadata.

When @Configuration classes are provided as input, the @Confi guration class itself is

3.1 Reference Documentation 116



Spring Framework

registered as a bean definition, and all declared @ean methods within the class are also registered as
bean definitions.

When @onponent and JSR-330 classes are provided, they are registered as bean definitions, and it is
assumed that DI metadata such as @A\ut owi red or @ nj ect are used within those classes where
necessary.

Simple construction

In much the same way that Spring XML files are used as input when instantiating a
O assPat hXm Appl i cati onCont ext, @onfi gurati on classes may be used as input when
instantiating an Annot at i onConf i gAppl i cati onCont ext . Thisalowsfor completely XML-free
usage of the Spring container:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onCont ext (AppConfi g.cl ass);
MyServi ce nyService = ctx.getBean(M/Service. cl ass);
mySer vi ce. doSt uf f ()

}

As mentioned above, Annot at i onConf i gAppl i cati onCont ext is not limited to working only
with @onf i gurati on classes. Any @onponent or JSR-330 annotated class may be supplied as
input to the constructor. For example:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cationContext(M/Servicel npl.class, Dependencyl.cl ass, Depen
MyServi ce nyService = ctx.getBean(M/Servi ce. cl ass);
nmySer vi ce. doSt uf f ()

}

The above assumes that MyServi cel npl, Dependencyl and Dependency2 use Spring
dependency injection annotations such as @\ut owi r ed.

Building the container programmatically using r egi st er (C ass<?>...)

An Annot at i onConf i gAppl i cati onCont ext may be instantiated using a no-arg constructor and
then configured using the regi ster() method. This approach is particularly useful when
programmatically building an Annot at i onConf i gAppl i cati onCont ext .

public static void main(String[] args) {
Annot at i onConf i gAppl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onContext();
ct x. regi ster (AppConfig.class, OherConfig.class)
ctx. regi ster(Additional Config.class);
ctx.refresh();
MyServi ce nyService = ctx.getBean(M/Service. cl ass);
mySer vi ce. doSt uf f () ;

Enabling component scanning with scan(String...)

Experienced Spring users will be familiar with the following commonly-used XML declaration from
Spring'scont ext : namespace

<beans>

3.1 Reference Documentation 117



Spring Framework

</

<cont ext : conponent - scan base- package="com acme"/>
beans>

In the example above, the com acne package will be scanned, looking for any @onponent -annotated
classes, and those classes will be registered as Spring bean definitions within the container.
Annot at i onConf i gAppl i cati onCont ext exposes the scan(String...) method to alow
for the same component-scanning functionality:

public static void main(String[] args) {

}

Annot at i onConf i gAppl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onContext();
ctx.scan("com acne");

ctx.refresh();

MyServi ce nyService = ctx.getBean(M/Servi ce. cl ass);

Note

Remember that @Conf i gur at i on classes are meta-annotated with @onponent , so they
are candidates for component-scanning! In the example above, assuming that AppConfi g is
declared within the com acmne package (or any package underneath), it will be picked up
during the call to scan() , and upon r ef resh() al its @ean methods will be processed

and registered as bean definitions within the container.

Support for web applications with Annot ati onConf i gWebAppl i cati onCont ext

A

WebAppl i cati onCont ext variant of Annot ati onConfi gAppli cati onCont ext

is

available with Annot at i onConf i gWebAppl i cati onCont ext . This implementation may be used
when configuring the Spring Cont ext LoaderLi stener servlet listener, Spring MVC
Di spat cher Ser vl et , etc. What followsisaweb. xm snippet that configures atypical Spring MVC
web application. Note the use of the cont ext Cl ass context-param and init-param:

<web- app>

<l-- Configure ContextLoaderlListener to use Annotati onConfi g\WebAppl i cati onCont ext
instead of the default Xnl WebApplicationContext -->
<cont ext - par an>
<par am name>cont ext Cl ass</ par am nanme>
<par am val ue>
org. springfranmewor k. web. cont ext. support. Annot ati onConf i gWebAppl i cat i onCont ext
</ par am val ue>
</ cont ext - par an®>

<!-- Configuration |ocations nust consist of one or nore comma- or space-delimted
fully-qualified @onfiguration classes. Fully-qualified packages nay al so be
speci fied for conponent-scanning -->

<cont ext - par an>
<par am nanme>cont ext Confi gLocat i on</ par am nane>
<par am val ue>com acne. AppConf i g</ par am val ue>

</ cont ext - par an>

<l-- Bootstrap the root application context as usual using ContextLoaderListener -->
<listener>

<l i stener-cl ass>org. spri ngframewor k. web. cont ext . Cont ext Loader Li st ener</|i st ener-cl ass>

</listener>

<l-- Declare a Spring M/C Di spatcherServl et as usual -->

31

Reference Documentation

118



Spring Framework

<servl et >
<servl et - nanme>di spat cher </ ser vl et - nane>
<servl et -cl ass>org. spri ngfranewor k. web. servl et. Di spat cher Servl et </ servl et-cl ass>
<l-- Configure DispatcherServlet to use Annotati onConfi gWebAppl i cati onCont ext
instead of the default Xnl WebApplicationContext -->
<i nit-parane
<par am name>cont ext Cl ass</ par am nanme>
<par am val ue>
org. spri ngframewor k. web. cont ext . support. Annot ati onConf i gWebAppl i cat i onCont ext
</ par am val ue>
</init-paran>
<l-- Again, config |locations nust consist of one or nore comma- or space-delinited
and fully-qualified @onfiguration classes -->
<i nit-parane
<par am nane>cont ext Confi gLocat i on</ par am nane>
<par am val ue>com acne. web. MrcConfi g</ par am val ue>
</init-paran>
</servl et>

<I-- map all requests for /app/* to the dispatcher servliet -->
<ser vl et - mappi ng>

<servl et - name>di spat cher </ ser vl et - name>

<url - pattern>/app/*</url-pattern>
</ servl et - mappi ng>

</ web- app>

Composing Java-based configurations

Using the @ nport annotation

Much asthe <i npor t / > element is used within Spring XML filesto aid in modularizing configurations,
the @ npor t annotation allows for loading @ean definitions from another configuration class:

@Conf i guration
public class ConfigA {

}

public @ean A a() { return new A(); }

@Conf i guration
@ nport (Confi gA. cl ass)
public class ConfigB {

}

public @ean B b() { return new B(); }

Now, rather than needing to specify both Conf i gA. cl ass and Confi gB. cl ass when instantiating
the context, only Conf i gB needsto be supplied explicitly:

public static void main(String[] args) {

}

Appl i cationContext ctx = new Annotati onConfi gAppl i cati onContext (ConfigB. cl ass);

/1 now both beans A and B will be available...
A a = ctx.getBean(A. class);
B b = ctx. get Bean(B. cl ass);

This approach simplifies container instantiation, as only one class needs to be dealt with, rather than
requiring the developer to remember a potentially large number of @onf i gur ati on classes during
construction.

31

Reference Documentation 119



Spring Framework

Injecting dependencies on imported @ean definitions

The example above works, but is simplistic. In most practical scenarios, beans will have dependencies on
one another across configuration classes. When using XML, this is not an issue, per se, because there is
no compiler involved, and one can simply declare r ef =" soneBean" and trust that Spring will work it
out during container initialization. Of course, when using @onf i gur at i on classes, the Java compiler
places constraints on the configuration model, in that references to other beans must be valid Java syntax.

Fortunately, solving this problem is simple. Remember that @onf i gur ati on classes are ultimately
just another bean in the container - this means that they can take advantage of @\ut owi r ed injection
metadata just like any other bean!

Let's consider a more real-world scenario with several @onf i gur ati on classes, each depending on
beans declared in the others:

@Configuration
public class ServiceConfig {
private @\utow red Account Repository account Repository;

public @ean TransferService transferService() {
return new Transfer Servi cel npl (account Repository);

}
}

@Conf i guration
public class RepositoryConfig {
private @\utow red DataSource dataSource;

publ i c @ean Account Repository account Repository() {
return new JdbcAccount Reposi t or y(dat aSource);
}

}

@conf i guration
@ nport ({ServiceConfig.class, RepositoryConfig.class})
public class SystenTest Config {
publ i c @ean DataSource dataSource() { /* return new DataSource */ }

}

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onCont ext ( Syst enilest Confi g. cl ass);
/] everything wires up across configuration classes...
TransferService transferService = ctx. getBean(TransferService. cl ass);
transferService.transfer(100.00, "A123", "C456");

}

Fully-qualifying imported beans for ease of navigation

In the scenario above, using @\ut owi r ed works well and provides the desired modularity, but
determining exactly where the autowired bean definitions are declared is still somewhat ambiguous. For
example, as a developer looking at Servi ceConfi g, how do you know exactly where the
@\ut owi red Account Reposit ory bean is declared? It's not explicit in the code, and this may be
just fine. Remember that the SpringSource Tool Suite provides tooling that can render graphs showing
how everything is wired up - that may be al you need. Also, your Java IDE can easily find all
declarations and uses of the Account Reposi t ory type, and will quickly show you the location of

3.1 Reference Documentation 120


http://www.springsource.com/products/sts

Spring Framework

@Bean methods that return that type.

In cases where this ambiguity is not acceptable and you wish to have direct navigation from within your
IDE from one @Confi gurati on class to another, consider autowiring the configuration classes
themselves:

@Conf i guration
public class ServiceConfig {
private @\utow red RepositoryConfig repositoryConfig;

public @ean TransferService transferService() {
/] navigate 'through' the config class to the @ean nethod!
return new Transfer Servicel npl (repositoryConfig.accountRepository());
}
}

In the situation above, it is completely explicit where Account Reposi t ory is defined. However,
Servi ceConfi g is now tightly coupled to Reposi t oryConfi g; that's the tradeoff. This tight
coupling can be somewhat mitigated by using interface-based or abstract class-based
@Conf i gur at i on classes. Consider the following:

@Configuration
public class ServiceConfig {
private @\wutow red RepositoryConfig repositoryConfig;

public @ean TransferService transferService() {
return new Transfer Servicel npl (repositoryConfig.account Repository());
}

}

@Configuration
public interface RepositoryConfig {
@ean Account Repository account Repository();

}

@conf i guration
public class Defaul t RepositoryConfig inplenents RepositoryConfig {
public @ean Account Repository account Repository() ({
return new JdbcAccount Repository(...);
}
}

@Configuration
@ nport ({Servi ceConfig.class, DefaultRepositoryConfig.class}) // inport the concrete config!
public class SystenTest Config {

publ i c @ean DataSource dataSource() { /* return DataSource */ }

}

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onCont ext ( Systenilest Confi g. cl ass);
TransferService transferService = ctx. getBean(TransferService. cl ass);
transferService.transfer(100.00, "A123", "C456");

}
Now  ServiceConfig is loosely  coupled with respect to the  concrete
Def aul t Reposi t or yConf i g, and built-in IDE tooling is still useful: it will be easy for the developer
to get a type hierarchy of RepositoryConfig implementations. In this way, navigating
@confi guration classes and their dependencies becomes no different than the usual process of
navigating interface-based code.

3.1 Reference Documentation 121



Spring Framework

Combining Java and XML configuration

Spring's @Conf i gur at i on class support does not aim to be a 100% complete replacement for Spring
XML. Some facilities such as Spring XML namespaces remain an ideal way to configure the container. In
cases where XML is convenient or necessary, you have a choice: either instantiate the container in an
"XML-centric" way using, for example, C assPat hXm Applicati onContext, or in a
"Java-centric"  fashion  using  Annot ati onConfi gAppl i cati onCont ext and the
@ npor t Resour ce annotation to import XML as needed.

XML-centric use of @onf i gur ati on classes

It may be preferable to bootstrap the Spring container from XML and include @onfi gurati on
classes in an ad-hoc fashion. For example, in a large existing codebase that uses Spring XML, it will be
easier to create @onfi gur ati on classes on an as-nheeded basis and include them from the existing
XML files. Below you'll find the options for using @onfi guration classes in this kind of
"XML-centric" situation.

Declaring @onf i gur ati on classes as plain Spring <bean/ > elements

Remember that @Conf i gur ati on classes are ultimately just bean definitions in the container. In this
example, we create a @onfiguration class named AppConfig and include it within
systemtest-config.xnl as a <bean/ >definition. Because
<cont ext:annotation-config/> is switched on, the container will recognize the
@Conf i gur at i on annotation, and process the @ean methods declared in AppConf i g properly.

@conf i guration
public class AppConfig {
private @\wutow red DataSource dataSource

public @ean Account Repository account Repository() ({
return new JdbcAccount Reposi t ory(dat aSour ce) ;
}

public @ean TransferService transferService() {
return new Transfer Servi ce(account Repository());
}

}

systemtest-config. xmn

<beans>
<l-- enabl e processing of annotations such as @wutow red and @onfiguration -->
<cont ext : annot ati on- confi g/ >
<cont ext: property-pl acehol der | ocati on="cl asspath:/com acne/j dbc. properties"/>

<bean cl ass="com acne. AppConfig"/>

<bean cl ass="org. spri ngfranmework.j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property nanme="usernane" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>
</ beans>

j dbc. properties

3.1 Reference Documentation 122



Spring Framework

jdbc. url =jdbc: hsqgl db: hsql : //1 ocal host/ xdb
j dbc. user nane=sa
j dbc. passwor d=

public static void main(String[] args) {
Appl i cationContext ctx = new Cl assPat hXml Appli cati onCont ext ("cl asspat h:/conf acne/ systemtest-config.xm");
Transf er Servi ce transferService = ctx. get Bean( Tr ansf er Servi ce. cl ass) ;
I/

}

Note

In systemtest-config.xm above the AppConfi g<bean/ > does not declare an
i d element. While it would be acceptable to do so, it is unnecessary given that no other bean
will ever refer to it, and it is unlikely that it will be explicitly fetched from the container by
name. Likewise with the Dat aSour ce bean - it is only ever autowired by type, so an
explicit bean id is not strictly required.

Using <cont ext : conmponent - scan/ > to pick up @onfi gurati on classes

Because @Confi gurati on is metaannotated with @onponent, @Confi gur at i on-annotated
classes are automatically candidates for component scanning. Using the same scenario as above, we can
redefine systemt est - confi g. xm to take advantage of component-scanning. Note that in this
case, we don't need to explicitly declare <context:annotati on-config/ >, because
<cont ext : conponent - scan/ > enables al the same functionality.

systemtest-config. xmn
<beans>
<!-- picks up and registers AppConfig as a bean definition -->
<cont ext : conponent - scan base- package="com acme"/>
<cont ext: property-pl acehol der | ocati on="cl asspath:/com acne/j dbc. properties"/>

<bean cl ass="org. spri ngfranmework.j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property nanme="usernane" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>
</ beans>

@conf i gurati on class-centric use of XML with @ nport Resour ce

In applications where @Conf i gurati on classes are the primary mechanism for configuring the
container, it will still likely be necessary to use at least some XML. In these scenarios, simply use
@ npor t Resour ce and define only as much XML as is needed. Doing so achieves a "Java-centric”
approach to configuring the container and keeps XML to a bare minimum.

@Configuration
@ nport Resour ce("cl asspat h: / conf acne/ properties-config.xm")
public class AppConfig {
private @alue("${jdbc.url}") String url;
private @/al ue("${jdbc.usernane}") String usernane
private @al ue("${jdbc. password}") String password;

publ i c @ean Dat aSource dataSource() {

3.1 Reference Documentation 123



Spring Framework

return new Driver Manager Dat aSour ce(url, username, password);

properties-config.xmn
<beans>

<cont ext: property-pl acehol der | ocati on="cl asspath:/com acne/j dbc. properties"/>
</ beans>

j dbc. properties

jdbc. url =jdbc: hsqgl db: hsql : //1 ocal host/ xdb
j dbc. user nane=sa

j dbc. passwor d=

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onCont ext (AppConfi g.cl ass);
TransferService transferService = ctx. get Bean(Transf er Servi ce. cl ass) ;
...

}

Using the @ean annotation

@Bean is a method-level annotation and a direct analog of the XML <bean/ > element. The annotation
supports some of the attributes offered by <bean/ >, such as: i ni t - net hod, dest r oy- net hod,

aut owi ri ng and nane.

You can use the @ean annotation in a @onf i gur at i on-annotated or in a @onponent -annotated
class.

Declaring a bean

To declare a bean, simply annotate a method with the @ean annotation. Y ou use this method to register
a bean definition within an Appl i cat i onCont ext of the type specified as the method's return value.
By default, the bean name will be the same as the method name. The following is a smple example of a
@Bean method declaration:

@conf i guration
public class AppConfig {

@ean
public TransferService transferService() {
return new Transfer Servicel npl ();

}

The preceding configuration is exactly equivalent to the following Spring XML.:

<beans>
<bean id="transferService" class